
Draft version November 23, 2016
Typeset using LATEX twocolumn style in AASTeX61

WOMBAT: A SCALABLE AND HIGH PERFORMANCE ASTROPHYSICAL MHD CODE

P. J. Mendygral,1, 2 N. Radcliffe,1 K. Kandalla,1 D. Porter,3 B. J. O’Neill,2, 3 C. Nolting,2, 3 P. Edmon,4

J. M.F. Donnert,2, 5, 6 and T. W. Jones2, 3

1Cray Inc., St. Paul, MN 55101
2School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
3Minnesota Supercomputing Institute for Advanced Computational Research
4Institute for Theory and Computation, Center for Astrophysics, Harvard University, Cambridge, MA 02138
5INAF-Istituto di Radioastronomia, via. P.Gobetti 101, I-40129 Bologna Italy
6ERC Marie Curie Fellow

ABSTRACT

We present a new code for astrophysical magneto-hydrodynamics specifically designed and optimized for high per-
formance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming
model that emerged from a collaboration between Cray Inc. and the University of Minnesota. This design utilizes
MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts
ideal for the latest generation of the multi-core and many-core architectures. We describe and demonstrate our high-
performance design in detail with the intent that it may be used as a model for other, future astrophysical codes
intended for applications demanding exceptional performance.

Keywords: general - methods: numerical - MHD

pjm@cray.com

nradclif@cray.com

kkandalla@cray.com

dhp@umn.edu

oneill@astro.umn.edu

nolt0040@umn.edu

pedmon@cfa.harvard.edu

donnert@ira.inaf.it

twj@umn.edu

mailto: pjm@cray.com
mailto: nradclif@cray.com
mailto: kkandalla@cray.com
mailto: dhp@umn.edu
mailto: oneill@astro.umn.edu
mailto: nolt0040@umn.edu
mailto: pedmon@cfa.harvard.edu
mailto: donnert@ira.inaf.it
mailto: twj@umn.edu

2

1. INTRODUCTION

MHD simulations allow us to study the dynamics of
highly conducting astrophysical fluids, whose behav-
iors and diagnostics can be quite distinct from non-
conducting fluids. This is very important, since many
astrophysical fluids are, indeed, highly conductive ion-
ized plasmas. Such media inevitably develop magnetic
fields. MHD modeling then allows us to incorporate
essential consequences of the magnetic fields, includ-
ing their dynamical, “Maxwell” stresses and energy ex-
changes with the fluids and their influences on transport
and dissipative behaviors within the fluids. Even nomi-
nally “weak” magnetic fields whose Maxwell stresses are
mostly subdominant to inertial and to thermal pressure
stresses can have major impact on the development of
turbulence, especially on small scales where the turbu-
lence is dissipated, on bulk fluid transport of momen-
tum, angular momentum and energy, and on such im-
portant thermodynamical behaviors as thermal conduc-
tion. If the simulations include, in addition to MHD
physics of the bulk fluids, the transport of high energy,
non-thermal “cosmic ray” particle populations embed-
ded in the flows (whose transport depends fundamen-
tally on the fluid magnetic field), the simulations can
open up access to additional, unique windows through
emission processes involving the cosmic ray interactions
with the bulk fluid and its magnetic field. Such emis-
sions include γ-ray by-products of cosmic ray proton
interactions with the bulk fluid and radio to X-ray
emissions from cosmic ray electrons, including magneto-
bremsstrahlung (more commonly known as synchrotron
radiation).

Since magnetic field properties and their consequences
in astrophysical fluids very often derive from the very
details of the fluid dynamics over a wide range of scales
that are of interest, it is essential when simulating MHD
flows to capture the dynamics with high fidelity over this
full range of scales. This is generally a very intensive
and challenging computational task that, despite much
progress in coding and vast improvements in computing
infrastructure, has often remained beyond current capa-
bilities. That challenge is the motivation for our efforts
described here to develop an MHD code environment
that can effectively utilize and expand with the com-
ing generations of computational infrastructure to allow
solutions to these pressing astrophysical problems.

Numerous codes exist for both general purpose and
specific use astrophysical fluid simulations. Some exam-
ples are GADGET (Dolag & Stasyszyn 2009), ND-
SPMHD (Price 2012), AREPO (Mocz et al. 2016),
ENZO (Bryan et al. 2014), ATHENA (Gardiner & Stone
2008), RAMSES (Teyssier 2002), CHARM (Miniati

& Martin 2011), PLUTO (Mignone et al. 2007), and
FLASH (Fryxell et al. 2000). Codes like these have
been developed over many years and often have features
for adding the effects of gravity, cosmic-ray transport,
non-ideal MHD, cosmic expansion, and non-adiabatic
energy gains and losses, including radiative and conduc-
tive cooling and heating. Preparing such applications
for “exascale” requires a substantial investment in code
re-design and optimization, to enable the community to
leverage the capability of new architectures and make
new scientific breakthroughs. Dubey et al. (2016) re-
cently presented a survey of the challenges and potential
approaches to modernizing some of the most popular
community codes.

The latest multi-core and many-core processors, such
as Intel Xeon and Intel Xeon Phi, feature increasing core
counts per processor with decreasing clock speed along
with increasing SIMD vector lengths. Hence, cache
blocking and vectorization are critical to obtaining good
performance from modern processors. But the increas-
ing core counts also put pressure on the traditional MPI-
only parallelization models. Memory consumption from
a large number of independent MPI processes on a node
may become prohibitive. For MHD simulations that de-
velop substantial load imbalance, possibly through the
inclusion of N-body dynamics or multi-level mesh refine-
ment, balancing work between MPI ranks is critically
important. The process of balancing work between MPI
ranks carries potentially significant overhead, however.
This overhead is the combination of the cost of mov-
ing grid data between MPI ranks and communication of
the change in decomposition to some or all MPI ranks.
There are several established strategies for reducing the
overhead, including decomposition meta-data replica-
tion, but these techniques come at the cost of mem-
ory and complexity (Dubey et al. 2016). Programming
models that allow for load balancing with less explicit
communication are greatly needed.

One attractive approach is the hybrid OpenMP/MPI
model, as discussed in (Bryan et al. 2014). It allows MPI
ranks to hold larger portions of the world grid. In the
context of mesh refinement, added work due to refine-
ment at any single location is a lower fraction of a rank’s
total load. For many calculations it could also result in
a more symmetric load across MPI ranks if refinement
needs are not confined to a single region. Work within
an MPI rank can be load balanced among threads with
any form of dynamic work scheduling. Finally, on-node
imbalances due to contention of shared resources, such
as cache or bandwidth, also can be mitigated with at-
tention to thread scheduling. However, typical parallel
loop-based OpenMP designs have shown too little scope

3

(amount of code effectively threaded) to scale effectively
to high thread count.

Modern HPC interconnects often feature low laten-
cy/high bandwidth messaging with network-offloading,
which enables overlap of computation with communica-
tion. MPI-RMA is a feature added to the MPI stan-
dard in order to expose these capabilities to the user. It
should be possible for an application to drive communi-
cation near hardware limits with a highly efficient MPI-
RMA implementation. However, MPI libraries need
high performance MPI THREAD MULTIPLE im-
plementations for the hybrid OpenMP/MPI model to
include communication parallelization.

In this paper we present an application design study
for a new grid-based MHD code called WOMBAT. The
goal of this project is to address the optimization oppor-
tunities discussed above through a co-design process. In
pursuit of this goal, we seek a base design well suited
for uni-grid simulations yet formulated for complex con-
ditions requiring load balancing. For the purpose of
this paper, we review the base design for MHD uniform
meshes only. WOMBAT development is a collabora-
tion between Cray Inc. Programming Environments and
the University of Minnesota. Through this collaboration
we developed a design strategy (see §2) that adapts to
architectures (CPU and interconnect) using language,
OpenMP and MPI best practices. We also identified
bottlenecks and optimizations for MPI (Cray MPICH)
resulting in significant performance improvements. Sec-
tion 3 is a performance review of WOMBAT on three
architectures that can be used as a model for assessing
the quality of any similar implementation. We discuss
specific implementation details in §4. Our design strat-
egy is applicable to many other codes and serves as a
potential path forward for exascale application readi-
ness.

In what follows “KNL” designates the Intel R© Xeon R©

Phi many-core processor (Knights Landing), “Broad-
well” a recent Intel R© Xeon R© multi-core processor
(Broadwell) and “Interlagos” the AMD OpteronTM

multi-core processor (Interlagos). In all figures, these
processors are shown as red, green and blue, respec-
tively.

2. SCALABLE DESIGN STRATEGY

The key design characteristic of WOMBAT is to sub-
divide the problem into completely independent pieces
of the world grid that include their own boundary zones
and necessary meta-data for updating from one time
step to the next. We refer to these independent pieces
as “Patches.” This design naturally accommodates any

numerical method with local or semi-local communica-
tion needs.

The concept is similar to data management strate-
gies in other many MHD codes (see Dubey et al. 2016),
but our design takes a unique approach to processing
and scheduling the computation and communication of
Patches. A Patch is a unit of work that a thread within
a WOMBAT MPI process independently operates on.
No assumptions are made on the number of Patches rel-
ative to the number of threads since our design adapts
to this ratio. Patch boundaries also define units of com-
munication work done with either local (intra-process)
or remote (inter-process) copies. The number of zones
in each dimension of a Patch and the number of them
in each dimension on a rank (and Domain, see §2.1) are
input parameters. This allows us to tune them for per-
formance on a given architecture (see §3.2.1).

WOMBAT is written in Fortran 2008. Fortran se-
mantics make it easy for modern compilers to identify
and apply optimizations, such as vectorization, as long
as developers follow simple rules (see §2.2.2). Code mod-
ularity, organization and maintainability benefit from
the object-oriented features available in Fortran 2008.
However, overuse of classes can lead to a loss of opti-
mization opportunities for a compiler. Thus any per-
formance critical section of WOMBAT is basic Fortran
code working on arrays. The code is constructed from
three main categories of classes: data managers, engines
and solvers. Data managers do memory management
and supporting functions. Solvers accept data managers
as arguments and update their arrays following whatever
numerical methods they employ. Engines orchestrate
parallelism and the book-keeping and communication
requirements for handing data managers to solvers.

Table 1 shows the hardware constraints on the cur-
rent and next generation of HPC systems, alongside the
techniques and optimizations we include in our design
strategy to meet these constraints.

2.1. Domain Decomposition

To construct the Patches, the world grid is decom-
posed into N equal size sub-volumes (Domains), each
assigned to an MPI rank. An MPI rank’s sub-volume
is further decomposed into Patches containing an equal
number of zones. Patches in a Domain communicate
boundary data with one another and with Patches on
neighboring ranks. Figure 1 shows a sample 2d con-
figuration of the Patch-Domain hierarchy across an ar-
bitrary number of MPI ranks. The figure is centered
on a single MPI rank’s Domain. That rank has eight
neighbors labeled N0 through N7 each with their own
Domain. Inside every MPI rank’s Domain is a 5x5 grid

4

Table 1. HPC architecture constraints and the optimization techniques and features developed in WOMBAT to
address them.

Hardware Constraint Optimization Approach WOMBAT Design

high FLOP/Byte ratio cache blocking Patch

slow scalar + wide vectors vectorization Fortran + vectorization best practices

many cores thread scalability SPMD OpenMP + new Cray MPICH + Patch

distributed architecture RDMA + computation/communication overlap AIO + MPI-RMA + new Cray MPICH + Patch

N6 N2 N5

N0 N1

N4 N3 N7

P0 P1 P2 P3 P4

P5 P6 P7 P8 P9

P10 P11 P12 P13 P14

P15 P16 P17 P18 P19

P20 P21 P22 P23 P24

Figure 1. Sample 2d decomposition. Regions labeled N[0-7]
are the Domain of each MPI neighbor rank for the MPI rank
in the center. Regions labeled P[0-24] are 25 Patches inside
each MPI rank’s Domain.

of Patches, labeled P0 through P24 for the central Do-
main.

We implement the Patch-Domain design as Fortran
classes. The Domain class is responsible for tracking
the MPI rank and local or remote Patches that share
boundaries with it. This design can be extended to
nested block SMR/AMR. In support of that and generic
load balancing between MPI ranks, Patches inside a Do-
main are allowed to become active or inactive, meaning
member data structures can be allocated and updated
in time, deallocated and not included in updates. In-
formation about the MPI rank(s) and remote Patches
sharing a boundary with a Patch can be modified over
time, allowing Patches to be moved between ranks with
minimal bookkeeping and communication. In particu-
lar, we do not store global data structures for tracking
decomposition.

2.2. Optimization and Multi-level Parallelization
Strategy

Three levels of parallel optimization are common
to HPC systems: SIMD vectorization, intra-process
threading (using OpenMP), and inter-process commu-
nication (using MPI). Cache blocking is an additional
optimization that addresses memory topology on these
systems.

2.2.1. Cache Blocking

The Patch design naturally results in cache blocking,
which directly addresses bandwidth limitations. The
most popular CPUs used in HPC today have FLOP/s
to Byte/s ratios (ratio of floating point performance to
memory bandwidth) of ' 101, hence algorithms with
similar computational intensities run most efficiently.
However, computational intensities that high are diffi-
cult to achieve with stencil based numerical methods for
solving MHD. Processor caches can mitigate this issue
when used effectively and stencil methods provide good
opportunity for reuse of loaded values between opera-
tions. Hence, good performance requires cache block-
ing techniques on all key loops. However, explicitly
programmed cache blocking can be cumbersome, be-
cause all performance-critical nested loops over problem
dimensions must be expanded into higher dimensional
loops with tunable blocking parameters.

Since all solvers in WOMBAT operate on a single
Patch, their computationally intensive loops are all
roughly the size of a Patch. The best Patch size that fits
into a level of cache inherently gets reuse out of cache
(typically the best size fits into L3 cache but not entirely
into L2, see §3.2.1).

2.2.2. SIMD Vectorization

Operations on a Patch consist of floating point and
data motion intensive loops. These loops are written
to be good SIMD vectorization candidates following the

1 For example, a 1.4 GHz Intel Xeon Phi processor is theoreti-
cally able to achieve ' 3 TFLOP/s and has a memory bandwidth
of ' 450 GB/s.

5

MPI Buildup

Object Constructors

Array Allocations

t < tend

I/O

Update Engine

t = t + dt

Object Destruction

YES

NO

Threaded Region

EXIT Simulation

Figure 2. Flow diagram for the main driver in WOMBAT.
The scope of the single OpenMP parallel region is outlined
with a dashed box.

typical rules of stride-one access, recurrence free, and
limited conditional logic. To accomplish good maintain-
ability and portability we do not explicitly program this
level of parallelization and leave it to a compiler to de-
cide if and when to use vectorization. This usually re-
quires scalar operations be isolated to separate loops so
the remaining work is available for vectorization.

2.2.3. OpenMP Threading

The benefits of hybrid application scaling to high
thread counts was discussed in §1. We avoid the bottle-
necks of parallel loop-based OpenMP by arranging
WOMBAT such that only one OpenMP parallel region
is present for the duration of execution. This design
presents the threaded region as a set of completely in-
dependent processes, which mimics the parallelism of
MPI. We refer to this approach as ”SPMD” OpenMP
(see also Kandalla et al. 2016).

To illustrate this design, we show a flow diagram of
the main driver in WOMBAT in Figure 2. A section
including MPI initialization and base object construc-
tion is the only work by the main thread outside the

parallel region. After that, every portion of WOMBAT
is executed by all threads collaboratively. This includes
array allocation/paging, computation, communication,
and even I/O.

2.2.4. MPI

To allow fine-grained work-communication overlap,
the Patch design results in a larger number of small mes-
sages, compared to traditional approaches which typi-
cally use fewer monolithic boundary exchange messages.
This shifts the communication sensitivity of WOMBAT
from simply bandwidth to bandwidth and message rate,
depending on the number and size of Patches. A Domain
decomposed into Patches will generate more MPI mes-
sages and a higher aggregate amount of data moved, es-
pecially in 3d, due to added corner and edge boundaries.
This extra communication will later be leveraged for
communicating load information and changes to Patch
ownership. Furthermore, in the SPMD approach every
thread can participate in the MPI communication using
MPI THREAD MULTIPLE.

Most of the MPI communication in WOMBAT uses
MPI-RMA (e.g., MPI Put(), MPI Get()), because
of the low overhead possible with a proper MPI-RMA
implementation. MPI-RMA was added to the MPI stan-
dard primarily to give users direct access to the Remote
Direct Memory Access (RDMA) features available on
most HPC networks (interconnects). PUT and GET
operations in MPI-RMA are inherently non-blocking,
and excellent overlap of computation and communica-
tion is possible on networks that also support network-
offloading. While the semantics of MPI-RMA allow for
these performance characteristics, many MPI libraries
today implement MPI-RMA using two-sided communi-
cation (e.g., Dinan et al. 2016). This adds overhead and
reduces the chances for overlap, leaving MPI-RMA prac-
tically unusable for an HPC application. Recent work
in MVAPICH (Li et al. 2013; Potluri et al. 2011a,b) and
OpenMPI (Hjelm 2014, 2016) has corrected that issue
on both Infiniband and Cray networks. In Cray MPICH,
MPI-RMA is now based on the low level DMAPP library
specifically designed for optimal one-sided communica-
tion on Gemini and Aries interconnects. This imple-
mentation has very low overhead, tuned to utilize the
network-offload (Block Transfer Engine or BTE) capa-
bility on Cray XE/XC systems.

Message rate requirements and the SPMD design
make it critically important that multi-threaded MPI-
RMA in a given MPI library performs well. During
the design of WOMBAT we found that no MPI imple-
mentation really achieved the performance that should
be possible. This is because most MPI implementa-

6

tions (including Cray MPICH at the time) use a global
lock to provide thread safety (see also Dosanjh et al.
2016). This serializes all MPI calls, and more impor-
tantly, most work in the user code around those MPI
calls. Through a co-design approach we have optimized
Cray MPICH for high performance and thread scal-
able MPI-RMA communication (see §4.1.2). We refer
to this new capability as “thread-hot RMA”. An ini-
tial version is available to Cray users starting with Cray
MPICH 7.3.4 with additional enhancements from the
work presented here available in an upcoming releases.
Other MPI libraries are also pursuing optimizations for
MPI THREAD MULTIPLE that will make our de-
sign performance portable beyond Cray systems (Amer
et al. 2015; Vaidyanathan et al. 2015).

2.2.5. Asynchronous I/O

WOMBAT uses a custom asynchronous I/O (AIO) li-
brary that allows for overlap of simulation progression
and data writing. If all I/O data can be buffered, data
can be written out with almost no impact on execu-
tion time. Some portion of I/O work is done blocking if
buffers are made smaller, which reduces overall perfor-
mance.

AIO is implemented as a set of specialized ranks
dedicated to receiving (or sending for read operations)
data from a client set of worker ranks. All threads in
the worker ranks package data into I/O buffers. Non-
blocking communication is used to move data to AIO
server ranks, and the AIO ranks then write data out as
it comes in. The full system can be tuned for I/O and
overlap performance by adjusting the total number of
AIO server ranks.

3. PERFORMANCE

We measure the performance of WOMBAT for
3d MHD calculations using the directionally un-split
MHDTVD solver described in §5. Single node tests
focus on the impact of vectorization on overall execu-
tion and the parallel efficiency of the SPMD OpenMP
technique. Multi-node tests at scale measure the per-
formance of the full suite of parallelization strategies,
including off-node communication, and how they inter-
act. We stress that the problems sizes used for most
experiments presented here were selected to show over-
heads in WOMBAT, and in particular communication.
This also closely follows real-world simulations run on
production systems.

Table 2 summarizes the platforms used for perfor-
mance experiments. We used Blue Waters (Cray XE)
at the NCSA for very large weak scaling studies. The
remaining systems are internal configurations at Cray

64 128 256 512
4

8

16

Vector Length [bits]

T
im

e
p
er

U
p
d
at

e
[s

]

KNL, 68 threads

Figure 3. Time per update in seconds for increasing VL
(strong scaling) on KNL with 68 threads.

Inc. We use the Cray Compiler (CCE) in all experi-
ments. Table 3 shows specific test information about
each processor. We used the new Cray MPICH library
with the “thread-hot RMA” feature in all tests unless
otherwise noted.

All experiments involving KNL were run with nodes
configured in so-called “quadrant” Non-Uniform Mem-
ory Access (NUMA) mode with high bandwidth memory
(on package) configured as a 16 GB L3 cache.

3.1. Single Node Performance by Architecture
3.1.1. SIMD Scaling

We measure the impact of increasing vector length
(VL) from 64 to 512 bits on KNL2. The problem size is
a 17x42 Domain of Patches each with 483 zones updated
by a single MPI rank with 68 threads.

Figure 3 shows the strong scaling with increasing VL
on a single node of the XCKNL system. The time to per-
form a single time step update is reduced approximately
by a factor of 2 going from 64 and 256 bit vectors. The
final step to 512 bit vectors continues to show improved
performance, but the effect has been reduced to only a '
19% speedup. Factors that affect the speedup from vec-
torization are the amount of vector versus scalar code ex-
ecuted, the efficiency of the vector code generated by the
compiler, and the memory bandwidth available to pro-
vide data to the cores. Overall, vectorization speeds up
WOMBAT by almost a factor of 2.5X on KNL proces-
sors. The speedup is roughly consistent with Amdahl’s
Law, assuming the fraction of execution time benefitting
from parallelization p ≈ 0.65.

2 To vary the type of vectors, we use the CCE compiler flag “-h
preferred vector width=X”, where X = {128, 256, 512}. For
scalar 64 bit vectors we use “-O vector0”.

7

Table 2. Test platforms used in the performance studies and their characteristics. Note: We mostly use 64 cores on KNL
systems to make scaling studies simpler multiples from lower core counts.

System Title Architecture Interconnect Topology CPU VL [bits] Cores per Node

Blue Waters Cray XE Cray Gemini 3d torus AMD OpteronT M 6276 “Interlagos” @ 2.3 GHz 256 16

XEIL Cray XE Cray Gemini 3d torus AMD OpteronT M 6281 “Interlagos” @ 2.5 GHz 256 16

XCBDW Cray XC Cray Aries dragonfly IntelR© XeonR© E5-2695 “Broadwell” @ 2.5 GHz 256 36

XCKNL Cray XC Cray Aries dragonfly IntelR© Xeon PhiT M 7250 “KNL” @ 1.4 GHz 512 68

Table 3. Processor compilation and placement notes.

CPU Compilation Flags Notes

Interlagos -O vector3 -h preferred vector width=256 Only one thread/process per floating point unit

Broadwell defaults Only one thread/process per core (no hardware threads used)

KNL defaults Only one thread/process per core (no hardware threads used)

Broadwell has accessible hardware performance coun-
ters for floating point operations that can be measured
with a number of performance tools, such as PAPI or
CrayPAT. Table 4 shows the quality of vectorization rel-
ative to a scalar build of WOMBAT. We also show the
breakdown of scalar and vector operations for the Intel
and GNU compilers. Vectorization with CCE reduces
total double precision (DP) floating point instruction
count by ∼ 71%. 79% of all floating point operations
are vector. Intel produces a similar amount of vector
instructions but also lower performance. The perfor-
mance difference is due to much lower translation looka-
side buffer (TLB) utilization despite using 2 Megabyte
huge pages. The GNU compiler is unable to produce
any vector instructions.

3.1.2. Thread Scaling

We show the thread strong scaling speedup of WOM-
BAT on the three architectures presented here in Fig-
ure 4 with the problem sizes given in Table 5. The
code shows excellent speedup with threads on all the
architectures. The speedup from threads on KNL is ∼
40X at 68 threads. The ”turbo” on Broadwell increases
performance for small thread numbers (green line ver-
sus dashed green line). On both Interlagos and Broad-
well there is notable loss of scaling once the process has
threads spanning beyond a single NUMA domain. On
Interlagos this is at 4 threads, because each Interlagos
processor is made up of two “Bulldozer” modules for a
total of four NUMA nodes on a dual socket XE node.
A KNL node configured in quadrant mode has only a
single NUMA node, and the deviation from ideal scal-

1 2 4 8 16 32 64
10−7

10−6

10−5

Number of Threads

T
im

e/
Z
on

e
[s

ec
]

Interlagos (XE6)

Broadwell (XC40)

Broadwell w/o turbo

KNL (XC40)

ideal scaling

Figure 4. Execution time per zone over number of threads
(strong scaling) for Interlagos (blue), Broadwell (green) and
KNL (red).

ing is moved to much higher thread counts. Profiles
showed that the cost of thread synchronization rising at
these thread counts, but there is the additional factor
of a finite amount of bandwidth available on the proces-
sor. Both of these account for most of the reduction in
performance from ideal.

3.2. Performance at Scale by Architecture

Off-node components of an application, such as net-
work latency and bandwidth, can modify its behavior
and how it should be tuned. We present a multi-node
Patch size optimization study for WOMBAT, and we
also demonstrate the weak and strong scaling capabili-
ties of WOMBAT out to large node counts.

8

Table 4. Effect of vectorization on floating point instruction count on Broadwell for
a single thread running a 23 x 323 problem for 100 time steps.

Compiler 109 Scalar Ops. 109 256 B SIMD Ops. sec / update % of DP Peak

CCE 8.5.4 (scalar) 327 0 1.87 6.6

CCE 8.5.4 20 74 0.96 14.1

Intel 17.0.1.132 15 75 1.67 8.1

GNU 6.2.0 320 0 1.84 6.6

Table 5. Number of Patches in each
direction of the Domain and number
of zones per Patch used by each ar-
chitecture in the thread strong scal-
ing test.

CPU Domain Size Patch Size

Interlagos 8x7x4 403

Broadwell 122x8 323

KNL 83 483

3.2.1. Patch Size Optimization

In §2.1 we described how Patches are logically assem-
bled to produce any grid size per rank. We study per-
formance with Patch size also allowing the mixture of
MPI ranks to OpenMP threads to vary at a scale of
27 nodes. 27 nodes is used because any configuration
of MPI ranks to threads at that scale will have unique
neighbors in 3d. This ensures that the MPI work is sat-
urated and performance is not skewed. We use “PPN”
to denote the number of MPI processes per node with
threads placed on all cores. The total number of zones
across each Patch size was held approximately constant
within a system type. We chose the problem setup so
update-times were held at ' 10 seconds. This is suffi-
ciently large to expect throughput values to be near their
absolute peak but still include overhead sensitivity.

Figure 5 shows the throughput on each architecture
given by the number of zones per second each node can
update. We can identify the maximum throughput each
system can achieve for these problem setups. XEKNL
nodes are able to update & 6x106 zones/sec/node at
peak compared & 4.5x106 zones/sec/node on XCBDW
and 2x106 zones/sec/node on XEIL. This demonstrates
the ability of our approach to adapt to the unique many-
core design of KNL.

The optimal Patch size is not uniform across systems.
XCBDW has the smallest optimal Patch size of 323. The
optimal Patch size for XEIL is 403, and XCKNL has

an optimal Patch size ' 503. The performance on ei-
ther side of the optimal size drops off but not by the
same amount on each system. Patch sizes smaller than
the optimal size have lower performance due to reduced
vectorization efficiency, and larger sizes have lower per-
formance due to spilling out of L3 on both Interlagos
and Broadwell. KNL has the largest SIMD vector size,
which explains why it has the largest optimal Patch size.
Overheads appear to affect Interlagos more than Broad-
well. This favors slightly larger Patches on Interlagos
despite having the same SIMD vector length as Broad-
well. The cache blocking properties of the Patch design
discussed in §2.2.1 no longer function as intended for
large Patches. On KNL the performance loss is not as
dramatic, with exceptions at high thread count. This is
due to the 16 GB L3 cache.

Both XEIL and XCBDW show lowest performance
with only a single rank per node packed with threads.
This is largely due to the NUMA issues discussed in
§3.1.2. In both of these cases, once the number of MPI
processes per node matches the number of NUMA nodes
on a node there is very little spread in performance at
the optimal Patch size. In the case of XCKNL perfor-
mance does not vary much until the Patch size is 503

or greater. While the absolute best performance on
XCKNL is with 16 PPN (∼ 6.5x106 zones/sec/node),
there is still significant performance at 4 PPN (∼ 6x106

zones/sec/node). At a high level, a fixed grid calcula-
tion should not perform any different exchanging ranks
for threads if both MPI and OpenMP are well imple-
mented and hardware limitations are not present. The
SPMD design in WOMBAT nearly achieves this.

3.2.2. Weak Scaling

Figure 6 shows the weak scaling on three architectures
at different values of PPN for the problem sizes given in
Table 6. For XCIL and XEBDW the best performance
and scaling is closely matched between a single MPI
rank per NUMA node or pure MPI, which follows the
conclusions in §3.2.1. The XCKNL systems has best
performance and scaling at 4 and 8 PPN. Relative to a
single node, XEIL has a 93% efficiency up to 150 nodes

9

10 20 30 40 50 60 70 80 90 100

1

1.5

2

Cubic Patch Size N3

10
6

Z
on

es
/S

ec
on

d
/N

o
d
e

1PPN 2PPN

4PPN 8PPN

16PPN

10 20 30 40 50 60 70 80 90 100

2.5

3

3.5

4

4.5

Cubic Patch Size N3

10
6

Z
on

es
/S

ec
on

d
/N

o
d
e

1PPN 2PPN

4PPN 12PPN

18PPN 36PPN

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

Cubic Patch Size N3

10
6

Z
on

es
/S

ec
on

d
/N

o
d
e

1PPN 2PPN

4PPN 8PPN

16PPN 64PPN

Figure 5. Performance in Million zones per second per node over number of zones along one patch dimension. We show
Interlagos (blue, top left) from the XEIL system, Broadwell (green, top right) from the XCBDW system and KNL (red, bottom)
from the XCKNL system at different values of MPI processes per node (PPN).

Table 6. Weak Scaling Test Setup: The
number of Patches in each direction of
the Domain and number of zones per
Patch used for each system.

System Patches per Node Patch Size

XEIL 4x4x4 403

XCBDW 6x62 323

XCKNL 8x42 483

at 4 PPN, and XCBDW at 2 PPN has a 87% efficiency
up to 512 nodes. Remarkably XCKNL has 89% efficency
at 648 nodes (41,472 threads) with 4 PPN relative to a
single node run.

The lowest performance at scale on all systems is with
a single rank per node. The increases in update times
are due to increasing amounts of off-node communica-
tion a rank encounters and imperfect overlap of commu-
nication with computation. Between 3 and 27 nodes,
off-node communication cost is saturated, and update
times are nearly flat for larger node counts. We con-
clude that WOMBAT has excellent weak scaling on all

systems with the optimal configuration despite the rel-
atively small problem size chosen.

We show weak scaling on Blue Waters in Figure 7 for
two values of PPN and problem sizes. We limit each run
to just 10 time steps. The 1 PPN runs scale out to 16,224
nodes (259,584 threads) with a world grid containing
' 66 billion zones. WOMBAT scales well with 60%
efficiency at 16,224 nodes for 1 PPN and 75% efficiency
at 4,096 nodes for 4 PPN relative to single node runs.

There are several spikes of increased update times. We
hypothesize it is due to network contention with both
other running applications and with WOMBAT itself on
the very large 3d torus topology. Runs on the smaller
dedicate XEIL system do not show these features. Going
forward, we intend to make use of the topology-aware
scheduling capability provided by the NCSA, and we
expect this to improve performance and reduce the con-
tention opportunities.

The right panel of Figure 8 shows the impact of the
“thread-hot RMA” capability that will be included in
an upcoming release of Cray MPICH. We show weak
scaling on XCKNL to 125 nodes with 4 PPN using the
same problem setup for weak scaling described above.

10

100 101 102 103
2

2.2

2.4

2.6

2.8

3

Number of Nodes

T
im

e/
U

p
d
at

e
[s

ec
]

1PPN

2PPN

4PPN

16PPN

100 101 102 103

2

2.2

2.4

Number of Nodes

T
im

e/
U

p
d
at

e
[s

ec
]

1PPN

2PPN

4PPN

36PPN

100 101 102 103
2

2.2

2.4

2.6

2.8

Number of Nodes

T
im

e/
U

p
d
at

e
[s

ec
]

1PPN 2PPN

4PPN 8PPN

64PPN

Figure 6. Time per update over number of full nodes (weak scaling) for XEIL (blue, top left), XCBDW (green, top right) and
XCKNL (red, bottom) at different PPN.

100 101 102 103 104

2.2

2.4

2.6

2.8

3

3.2

3.4

Number of Nodes

T
im

e
p
er

U
p
d
at

e
[s

]

4PPN− 4x4x4 x 403

1PPN− 4x4x2 x 483

102 103 104 105

Number of Threads

Figure 7. Weak scaling on Blue Waters for two different values of PPN and problem size.

11

Table 7. Strong scaling test setup.

System PPN World Grid Patches Base Patch Size

XEIL 4 14x8x12 403

XCBDW 2 48x122 323

XCKNL 2 32x16x12 403

This feature produces a 17% speedup over Cray MPICH
7.3.1.

3.2.3. Strong Scaling

The top panel of Figure 8 shows the strong scaling of
WOMBAT. We defined the problem size for each system
so that the time per update is limited to ∼ 60 seconds
(see Table 7). Performance closely follows the theoret-
ical speedup over 2 orders of magnitude in node count,
with XCBDW showing a 236X speedup at 384 nodes.
The deviations are due to overheads exposed as update
times at scale fall at or below 0.3 seconds. We reduced
the Patch size on XCBDW by half and on XCKNL by a
quarter at the largest scale, for example.

3.2.4. Thread Scheduling at Scale

We show the impact of OpenMP scheduling in Figure
9. In this experiment we modified the thread scheduling
for just a single loop in the Update Engine (see §4.1)
that drives updates over Patches. We run a balanced
(Patch count divides evenly into thread count) and an
imbalanced problem with the modified code and orig-
inal code. 4 MPI ranks per node on 27 nodes each
with 16 threads update 40 (imbalanced) or 32 (bal-
anced) Patches, each with 483 zones on the XCKNL
system. Both problems show near optimal throughput
with the GUIDED schedule and lower performance
with STATIC. Our SPMD OpenMP design has very
few thread barriers, and using a STATIC schedule as-
sumes threads are roughly synchronized to be efficient.

4. DESIGN DETAILS

4.1. Update Engine

In our design, the Update Engine is responsible
for scheduling computation and communication across
threads for any solver. It accepts a Domain and iter-
ates over Patches, exchanging messages and partitioning
the update work through the specified solver until all
Patches report back as completed. To allow for iterative
or sub-cycling solvers, it is not necessary that a Patch
be updated completely for the current time step after
only a single pass through a solver.

Figure 10 shows a schematic of the Update Engine.
It is contained inside the higher level OpenMP parallel
region shown in Figure 2, and all threads call it with
the same input data and requested solver class. The
outer while loop allows for iterative solvers that require
any arbitrary number of passes (including messaging) to
complete for a time step. The inner while loop contains
the work necessary to drive both communication and up-
dates through the requested solver. The work includes
packing (unpacking) boundary data into (out of) con-
tiguous buffers, used for either local copies within a rank
or MPI transfers between ranks. There is additional
work for signaling and data transfer between MPI ranks
and updating Patches with resolved boundaries through
the requested solver. The DomainSolver class manages
all book-keeping related to marking individual bound-
aries for any affected Patch as resolved/unresolved. It
also tracks grids within a Patch as incrementally or com-
pletely updated.

An important optimization in this design relates to
how boundary data is exchanged between Patches con-
tained in the same MPI rank. An instance of the
Patch class includes a buffer for incoming boundary data
(there is no matching buffer for outgoing data). This
buffer is only used for boundary data coming from an-
other local Patch. With the Domain class, data destined
for a local Patch is directly packed into the buffer of the
destination Patch. The buffer is later unpacked, along
with any non-local boundary data, into the Patch grid
boundary zones. This optimization takes advantage of
the shared memory aspect of OpenMP, completing local
Patch boundary exchange without calling MPI or exces-
sive buffering. Some buffering is necessary to minimize
contention between threads attempting to progress the
same Patch. A single node run can completely avoid
calling MPI with this feature by using threads on all
cores.

4.1.1. MPI-RMA Engine

The MPI-RMA Engine handles non-local communica-
tion between Patches. It is generic enough to manage
communication of any type of data of a wide range of
message lengths with memory overheads and intensity
on the network that is run-time tunable. The strat-
egy for the MPI-RMA engine was to remove all ex-
plicit synchronization between MPI ranks and utilize all
threads for both message packing/unpacking and initi-
ation of network transfers. We use a single passive ex-
posure epoch with MPI-RMA. The passive epoch starts
with ranks calling MPI Win lock() for each rank it
will communicate with. The communication strategy in
WOMBAT does not use protections between ranks, and

12

100 101 102

10−9

10−8

10−7

10−6

Number of Nodes

T
im

e/
Z
on

e
[s

ec
]

Interlagos (XE6)

Broadwell (XC40)

KNL (XC40)

ideal scaling

100 101 102
2

2.2

2.4

2.6

2.8

Number of Nodes

T
im

e
p
er

U
p
d
at

e
[s

]

KNL, Future Cray MPICH

KNL, Cray MPICH 7.3.1

Figure 8. Left: Update time per zone over number of nodes (strong scaling) for XEIL (blue), XCBDW (green) and XCKNL

(red) at constant problem size. Right: Update time in seconds over number of nodes (strong scaling) for Cray MPICH 7.3.1
(dark red) and new lock optimized Cray MPICH (light red) on XCKNL with 68 threads.

Guided Static
0

2

4

6

8

OpenMP Schedule

10
6

Z
on

es
/s

ec
/n

o
d
e

Imbalanced 5x2x4 x 483

Balanced 4x2x4 x 483

Figure 9. Comparison between the OpenMP GUIDED
loop schedule and the STATIC schedule as applied to the
DomainSolver class Patch update loop for an imbalanced
problem. 4 MPI ranks per node each with 16 threads worked
on a 5x2x4 domain of 483 Patches. The full run utilized 27
nodes.

the lock argument to MPI Win lock() is always set to
MPI LOCK SHARED. Locking and unlocking for
RMA exposure is moved outside the time loop, which
essentially removes their cost in exchange for minimal
overhead introduced by a signaling scheme.

Figure 11 shows an overview of the steps in the MPI-
RMA Engine. Operations from the point of view of both
a source and neighbor rank are shown in time. Note
that all source ranks are also a neighbor rank, meaning
that the steps are symmetric. The process begins with a
source rank packing some (not all) boundary data from
a Patch into a buffer. The rank then sends an 8 Byte
signal to the neighbor rank with MPI Put() indicat-
ing the size of the message that has been packed. At
some point the neighbor rank starts to poll on the lo-

Ncompleted < Ntotal

Nprogressed < Ntotal

Reset RMA signals

Mark all Patch bounds unresolved

Pack some Patch bounds

Unpack local Patch bounds

Update ready Patches

Unpack RMA mailboxes

Update progress counters

Compute MAX speed and EXIT

poll RMA signals + update a Patch

poll RMA signals + issue GETs

YES

NO

YES

NO

Figure 10. Generalize communication/update engine.

cal address where this signal is to be deposited waiting
for the value to become something other than the initial
state. Reading this address must be done carefully as to
not allow the compiler to cache the value in a register.
We do this by performing the read on the signal address
from a simple C routine, designed to prevent any reg-
ister caching from the calling Fortran code. Once the

13

Figure 11. RMA engine cycle.
N0 N1 N2 N3 N4 N5 N6 N7

B0 B1 B2 B3 B4 B5 B6 B7

s
ig
n
a
l

s
ig
n
a
l

h
e
a
d
e
r

payload

Figure 12. Anatomy of the buffer attached to the RMA
window.

signal value is modified, the value is interpreted as the
message length. If it is zero there is no message to trans-
fer, which can happen for a variety of reasons due to the
generic messaging property of the MPI-RMA Engine. If
the value is greater than zero the neighbor rank initiates
a network transfer with an MPI Get(). While the net-
work transfer is in flight, both the source and neighbor
rank do other communication or computation work. At
some point later the neighbor rank needs the transfer
to complete and calls MPI Win flush(). The message
is then unpacked, and the neighbor rank then sends a
signal pack to the source rank indicating that the trans-
fer is done and the source buffer can be freely modified.
The source rank eventually polls on that signal before it
can repeat the full process over again.

We note that an alternative implementation of this
cycle could be done entirely with MPI Put(). In such
a design, a MPI Put() call would immediately move
data to the destination rank completed sometime later
with MPI Win flush(). Then the initial MPI Put()
above is used to signal that data is in the destination
buffer. We did not use this design because it has the
potential for generating more intense many-to-one traffic

patterns, which can lead to degraded performance on
most HPC interconnects.

The MPI-RMA Engine cycle applies to each segment
of the single communication buffer that was created for
the RMA window with MPI Win Allocate(). Multi-
ple segments in this buffer allow for many unique mes-
sages to be exchanged with neighbor ranks. They also
present potential thread parallelism for communication.
The MPI-RMA Engine cycle is self-contained and can
be applied to any number of independent messages to
be exchanged with mininmal contention or protection
required between them. Multiple threads can therefore
drive the engine entirely independently as long as they
operate on separate buffer segments.

The single buffer attached to the RMA window in
WOMBAT is decomposed into multiple regions each
available for communicating Patch boundary data. Fig-
ure 12 shows the anatomy of this buffer with an example
of a 2d Cartesian domain with 9 MPI ranks (similar to
the domain structure in Figure 1). The figure begins at
the top looking at the entire RMA buffer logically sepa-
rated into equal size segments for each of the 8 neighbors
(labeled N0 through N7) any rank might have. Note that
it is possible for some of the logical neighbors to be the
same MPI rank if the world grid is periodic. Each of
these segments is further divided based on a run-time
tunable value for the number of “mailboxes” dedicated
to each neighbor rank. Increasing the number of mail-
boxes has the effect of putting more network transfers
in-flight at any moment, which can reduce the number
of iterations in the Engine. Each of these mailboxes is
large enough to buffer all boundary data to and from
one Patch (size is doubled for send and receive). It is
not necessary or common that this data be from the
same source Patch. In one of these mailboxes, there are
8 boundary segments corresponding to the 4 edges and
4 corners that will be communicated in 2d from a Patch

14

labeled B0 through B7. A single section of a boundary
segment, there are 4 distinct sections. The first two are
each 8 Bytes in length and are used for the incoming
and outgoing signals described above and in Figure 11.
The next “header” section is used to encode descriptive
data about the message payload. This information in-
cludes identifying information for the Patch that should
receive this boundary data. The header can be leveraged
for performing other communication that might be use-
ful to exchange between rank on a regular basis, such as
load imbalance statistics or changes in the ownership of
a given Patch. The final section in the boundary seg-
ment is the message payload.

The MPI-RMA Engine also has methods for initiating
and completing non-blocking global reductions. They
are used to compute time step sizes across all MPI ranks.
Our implementation delays time step calculation by one
step in order to overlap the collective with work.

4.1.2. MPI-RMA Thread Optimization in Cray MPICH

In the SPMD OpenMP model, threads do their com-
putation, message sending, and message completion
asynchronously, so contention on the interconnect re-
sources becomes relevant to performance. On Cray
XC systems the Aries interconnect provides 128 hard-
ware “lanes” called communication domains (CDMs) for
concurrent message transfers and synchronizations (al-
though MPI does not always make use of all of them).
The MPI library assigns these CDMs either statically
to threads the first time a thread makes an MPI call, or
dynamically each time a message is sent or completed.

In SPMD, static assignment of CDMs to threads is not
feasible anymore, because it provides no means for the
MPI library to dynamically minimize contention. For
example, if a thread needs to complete all messages tar-
geting a specific remote rank, it may need access to sev-
eral CDMs that have been statically assigned to other
threads before. Safe access to these CDMs could be han-
dled with a mutex, but doing so can force other threads
to wait for access to the CDM before sending a mes-
sage. Hence, dynamic allocation of CDMs is required to
minimize overhead from CDM contention and maximize
performance.

We have adapted Cray’s MPI RMA implementation
to use lock-free dynamic allocation of CDMs. It is now
designed specifically to minimize overhead due to CDM
assignment and maximize performance for SPMD ap-
proaches. The library guarantees contention-free com-
munication as long as the number of concurrent requests
to send and/or complete a message does not exceed the
available number CDMs.

5. NUMERICAL METHODS

For an initial implementation in the code design dis-
cussed above we use a 2nd order, directionally un-
split version of the non-relativistic ideal MHD solver
described in RJ95 and Ryu et al. (1998) referred to
as MHDTVD. This new implementation follows the
CTU+CT scheme, described in Gardiner & Stone (2005)
(hereafter GS05) and Gardiner & Stone (2008) (here-
after GS08), modified for the TVD solver. The algo-
rithm outlined here solves the equations of MHD ne-
glecting charge separation between ions and electrons,
electrical resistivity, viscosity, and non-adibatice pro-
cesses, such as thermal conduction. With these assump-
tions the ideal MHD equations are

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂v
∂t

+ v · ∇v +
1
ρ
∇ρ− 1

ρ
(∇×B)×B = 0, (2)

∂P

∂t
+ v · ∇P + γP∇ · v = 0, (3)

∂B

∂t
−∇× (v ×B) = 0, (4)

where γ is the plasma adibatic index. Following the
convention of RJ95, we have selected our units such
that 4π does not appear in these equations. For a one-
dimensional flow along the X direction, Equations 1 - 4
can be written in the conservative form

∂q
∂t

+
∂F
∂x

= 0, (5)

15

where q and F are the state vector and flux vector re-
spectively defined as

q =



ρ

ρvx

ρvy

ρvz

Bx

By

Bz

E



, (6)

F =



ρvx

ρv2
x + P ∗ −B2

x

ρvxvy −BxBy
ρvxvz −BxBz

0

Byvx −Bxvy
Bzvx −Bxvz

(E + P ∗)vx −Bx(Bxvx +Byvy +Bzvz)



.

(7)

The total pressure and total energy are given by

P ∗ = P +
1
2
(
B2
x +B2

y +B2
z

)
(8)

E =
P

γ − 1
+
ρ

2
(
v2
x + v2

y + v2
z

)
+

1
2
(
B2
x +B2

y +B2
z

)
.

(9)

A source term vector can be added to Equation 5 to in-
clude additional physics, such as gravity, geometry cor-
rections, cooling, and cosmic-ray feedback. This system
of equations is hyperbolic under the definition that the
Jacobian matrix, A = ∂F/∂q, has all real eigenvalues
and a complete set of right eigenvectors. This system is
not strictly hyperbolic, however, due to conditions that
can produce degenerate eigenvlues. The seven eigenval-
ues a1,7 = vx ± cf , a2,6 = vx ± ca, a3,5 = vx ± cs, and
a4 = vx correspond to three MHD wave families and an

entropy mode. The characteristic wave speeds are

cf =

(
1
2

[
a2 +

B2
x +B2

y +B2
z

ρ
+

√(
a2 +

B2
x +B2

y +B2
z

ρ

)2

− 4a2
B2
x

ρ

1/2

(10)

cs =

(
1
2

[
a2 +

B2
x +B2

y +B2
z

ρ
−

√(
a2 +

B2
x +B2

y +B2
z

ρ

)2

− 4a2
B2
x

ρ

1/2

(11)

ca =

√
B2
x

ρ
, (12)

where the sound speed is defined as a =
√
γP/ρ. One

of the difficulties in solving Equation 5 is that some of
the eigenvalues will coincide in limiting cases and special
care must be taken to avoid singularities around points
where Bx = 0 or By = Bz = 0 (RJ95). We summarize
the one dimensional MHDTVD algorithm in §A.0.1.

5.1. MHD in Two Dimensions

The 2d directionally un-split update closely follows
the steps for the CTU+CT scheme described in GS05.
Our implementation utilizes 5 boundary zones, which
requires only one boundary exchange per time step for
both state variables and zone corner EMFs. Given a
time step ∆t, the steps in the algorithm are:

Step 1: Compute the directionally split fluxes in both
X and Y directions using initial states qn from
Equation A3 for a time step ∆t.

Step 2: Compute a zone-centered reference EMF for
use in the mid-time step constrained transport up-
date of the face-centered magnetic field. The EMF
is given by vx ×By + vy ×Bx with each input de-
rived from the initial state vector qn.

Step 3: Using the upwinded algorithm in GS05, com-
pute EMF values at zone corners using the By and
Bx fluxes from the X and Y passes from Step 1 and
the reference EMF from Step 2.

Step 4: Update the face centered magnetic field bn to
bn+1/2 from the EMFs in Step 3 over ∆t/2.

Step 5: Update the zone centered state vector from the
initial states qn to qn+1/2

x using fluxes from the Y
pass in Step 1 applied over ∆t/2. Include the ∇·B
source term vector described by GS05.

16

Step 6: Using the preconditioned state qn+1/2
x , com-

pute fluxes along X from Equation A3 for a time
step ∆t.

Step 7: Repeat steps 5 and 6 for the Y direction.

Step 8: Compute a zone-centered reference EMF for
use in the final CT update of the face-centered
magnetic field. The EMF is given by vx × By +
vy × Bx with vx and vy coming from an un-split
update of qn to qn+1/2 using the fluxes from Steps
6 and 7.

Step 9: Using the upwinded algorithm in GS05, com-
pute EMF values at zone corners using the By and
Bx fluxes from the X and Y passes from Steps 6
and 7 and the reference EMF from Step 8.

Step 10: Use an un-split update of the state vector qn

to qn+1 using fluxes from Steps 6 and 7 applied
over ∆t.

Step 11: Update the face centered magnetic field bn to
bn+1 from the EMFs in Step 9 over ∆t. Update
the zone centered magnetic field from averages of
the face centered magnetic field as described in
GS05.

5.2. MHD in Three Dimensions

The 3d un-split update is based on the 6-solve algo-
rithm described in GS08. We again utilize 5 boundary
zones as described above for 2d. The steps in the 3d
algorithm are:

Step 1: Compute the directionally split fluxes in the
X, Y and Z directions using initial states qn from
Equation A3 for a time step ∆t.

Step 2: Compute zone-centered reference EMFs for use
in the mid-time step constrained transport update
of the face-centered magnetic field using inputs de-
rived from the initial state vector qn.

Step 3: Using the upwinded algorithm in GS08, com-
pute EMF values at zone corners using the mag-
netic fluxes from the directional passes from Step
1 and the reference EMF from Step 2.

Step 4: Update the face centered magnetic field bn to
bn+1/2 from the EMFs in Step 3 over ∆t/2.

Step 5: Update the zone centered state vector from the
initial states qn to qn+1/2

x with an un-split update
using fluxes from the Y and Z passes in Step 1
applied over ∆t/2. Include the ∇ · B source term
vector described by GS08.

Step 6: Using the preconditioned state qn+1/2
x , com-

pute fluxes along X from Equation A3 for a time
step ∆t.

Step 7: Repeat steps 5 and 6 for the Y and Z directions
using the appropriate transverse fluxes from Step
1.

Step 8: Compute zone-centered reference EMFs for use
in the final CT update of the face-centered mag-
netic field. Velocity values come from an un-split
update of qn to qn+1/2 using the fluxes from Steps
6 and 7.

Step 9: Using the upwinded algorithm in GS08, com-
pute EMF values at zone corners using the mag-
netic fluxes from the directional passes from Steps
6 and 7 and the reference EMF from Step 8.

Step 10: Use an un-split update of the state vector qn

to qn+1 using fluxes from Steps 6 and 7 applied
over ∆t.

Step 11: Update the face centered magnetic field bn to
bn+1 from the EMFs in Step 9 over ∆t. Update
the zone centered magnetic field from averages of
the face centered magnetic field as described in
GS08.

6. TEST CALCULATIONS

6.1. Linear Wave Convergence

We performed linear wave convergence tests using
eigenvectors of the Roe matrices for hydrodynamics and
MHD following the setup used by GS05. For one-
dimensional tests, we use a periodic domain L = 1 di-
vided into N zones containing a background fluid with
ρ = 1, P = 3/5, and γ = 5/3. The background is at rest
for shear and entropy waves, otherwise vx = 1. For hy-
drodynamic waves (sound, vy and vz shear, and entropy
modes), Bx = By = Bz = 0, while the background for
MHD waves (slow, Alfvén, fast, and entropy modes) has
magnetic field components Bx = 1, By =

√
2, Bz = 1/2.

A sinusoidal perturbation is applied to this background
state, such that the initial state vector is given by
q0 = q̄ + A0Rk cos(2πx), where q̄ is the background
state, A0 = 10−6 is the amplitude, and Rk is the right
eigenvector for the wave mode k.

Each wave is propagated for one wavelength, and
then the error in the solution is computed using the
L1 error vector averaged over every zone i, defined by
δq = N−1

∑
i

|qi−qi,0|. Increasing the number of zones

up to N = 1024, the solution for each wave mode in one
dimension converges with second-order accuracy as seen
by the norm of the L1 error vector in figures 13 and 14.

17

101 102 103

10−10

10−9

10−8

10−7

10−6

Resolution

L
1

E
rr

or

Entropy

Sound

Y-Velocity

Z-Velocity

ideal scaling

Figure 13. Convergence of the norm of the L1 error vector
for hydrodynamic wave modes after propagating one wave-
length in 1d. The dotted line shows a slope of -2 for com-
parison.

101 102 103

10−10

10−9

10−8

10−7

10−6

Resolution

L
1

E
rr

or

Alven

Entropy

Fast mode

Slow mode

ideal scaling

Figure 14. Convergence of the norm of the L1 error vector
for MHD wave modes after propagating one wavelength in
1d. The dotted line shows a slope of -2 for comparison.

We also tested the convergence of MHD waves prop-
agating oblique to a three-dimensional grid, following
the setup in GS08. The wave is initialized rotated with
respect to a computational grid of size (LX , LY , LZ) =
(3, 3/2, 3/2) with 2N×N×N zones, such that the wave
vector is ~k = (1/3, 2/3, 2/3). The face centered magnetic
field components are initialized via a vector potential
defined at the corners of the grid zones, and then zone
centered magnetic field values are averaged from face
centered fields. After propagating one wavelength, the
L1 error vector is computed with respect to the initial
conditions. The convergence with increasing resolution
is shown in figure 15.

6.2. RJ95 2a

The next set of tests are of the shock-tube setup
2a from RJ95. The left-hand state was initial-

101 102

10−8

10−7

10−6

Number of zones

L
1

E
rr

or

Alven Wave 3D

Entropy 3D

Fast mode 3D

Slow mode 3D

ideal scaling

Figure 15. Convergence of the norm of the L1 error vector
for MHD wave modes after propagating one wavelength in
3d. The dotted line shows a slope of -2 for comparison.

ized with (ρ, vx, vy, vz, By, Bz, P) = [1.08, 1.2, 0.01,
3.6/(4π)1/2, 2/(4π)1/2, 0.95], and the right-hand state
with [1, 0, 0, 0, 4/(4π)1/2, 2/(4π)1/2, 1]. For this test
Bx = 2/(4π)1/2. Figures 16 and 17 shows the evolved
grid at t = 0.2 in 1d and 3d respectively. The shock
normal is rotated 45◦ out of all primary planes in 3d.

6.3. RJ95 4a

Figures 18 and 19 show the results at t = 0.15 of the 4a
setup from RJ95. Figure 18 is the 1d result, and Figure
19 is the 3d result with the shock normal rotated 45◦ out
of all primary planes. The left-hand state was initialized
with (ρ, vx, vy, vz, By, Bz, P) = [1, 0, 0, 0, 1, 0, 1], and the
right-hand state with [0.2, 0, 0, 0, 0, 0, 0.1]. For this test
Bx = 1.

6.4. Brio & Wu Shock-tube

We performed the well-known MHD shock tube test
of Brio & Wu (1988) on a one-dimensional domain.
The left-hand state is initialized with the state vector
(ρ, vx, vy, vz, By, Bz, P) = (1.0, 0, 0, 0, 1.0, 0, 1.0), while
the initial right-hand state is (ρ, vx, vy, vz, By, Bz, P) =
(0.125, 0, 0, 0,−1.0, 0, 0.1). Throughout the domain,
Bx = 0.75, while the adiabatic index γ = 2. The solu-
tion computed on a domain with 400 zones at t = 0.08
compared to a better converged solution computed with
104 zones is shown in figure 20.

6.5. Orszag-Tang Vortex

A very common test in 2d for an MHD code is the com-
pressible Orszag-Tang vortex. This problem was first
studied by Orszag & Tang (1979) and is now used as a
standard comparison of MHD codes (Stone et al. 2008).
The setup for this problem uses a periodic box with LX
= [-0.5,0.5] and LY = [-0.5,0.5] and 192 × 192 zones.

18

1

1.2

1.4

1.6

D
en

si
ty

1

1.2

1.4

1.6

1.8

2

P
re

ss
u
re

2.5

3

3.5

4

4.5

E
n
er

gy

0

0.5

1

x
-v

el
o
ci

ty

−0.2

−0.1

0

0.1

0.2

y
-v

el
o
ci

ty

−0.2

0

0.2

0.4

0.6
z-

ve
lo

ci
ty

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

1

1.2

1.4

1.6

x

y
-m

ag
n
et

ic
fi
el

d

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

x

z-
m

ag
n
et

ic
fi
el

d

Figure 16. RJ95 shock tube test 2a in 1d at t = 0.2. Slices of density, pressure, energy, velocity components, and magnetic
field components are shown from top left to bottom right.

Uniform density and pressure are initialized throughout
the grid with ρ = 25/36π, P = 5/12π and γ = 5/3,
giving a sound speed of cs = 1. The velocity was ini-
tialized as vx = −v0SIN(2πy) and vy = v0SIN(2πx),
where v0 = 1. The magnetic field along zone faces
was derived from the vector potential defined at zone
corners Az = B0 [COS(4πx)/2 + COS(2πy)] /2π, where

B0 = 1/(4π)1/2, with b = ∇×A. Figure 21 shows the
resulting density, gas pressure, specific kinetic energy,
and magnetic pressure at t = 0.5, as well as slices of the
gas pressure at y = −0.0723 and y = −0.1875.

6.6. MHD Rotor

Another common MHD test problem in 2d is that of
a rotating disk in a magnetized medium. We follow the

19

1

1.2

1.4

1.6

D
en

si
ty

1

1.2

1.4

1.6

1.8

2

P
re

ss
u
re

2.5

3

3.5

4

4.5

E
n
er

gy

0

0.5

1

x
-v

el
o
ci

ty

−0.2

−0.1

0

0.1

0.2

y
-v

el
o
ci

ty

−0.2

0

0.2

0.4

0.6
z-

ve
lo

ci
ty

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

1

1.2

1.4

1.6

x

y
-m

ag
n
et

ic
fi
el

d

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

0.5

0.6

0.7

0.8

x

z-
m

ag
n
et

ic
fi
el

d

Figure 17. RJ95 shock tube test 2a in 3d at t = 0.2. Slices of density, pressure, energy, velocity components, and magnetic
field components are shown oblique to the grid from top left to bottom right.

setup used by Stone et al. (2008) and defined in Tóth
(2000) as “Rotor Problem 1” on a periodic domain with
400×400 zones. Distributions of density, pressure, Mach
number, and magnetic pressure for the solution at t =
0.15 is shown in figure 22, along with slices of the y-
component of the magnetic field at y = 0 and the x-
component of the magnetic field at x = 0.

6.7. Advection of a Field Loop

A powerful test of an MHD code’s ability to keep ∇·B
= 0 is the advection of a weak magnetic field loop. We
use a setup similar to that of GS05 for a 2d calculation.
A periodic box with LX = [-1.,1.] and LY [-0.5,0.5]
over 256x128 zones was initialized with ρ = 1, Pgas =
1, vx = 2, and vy = 0.5. The magnetic field was derived

20

0

0.2

0.4

0.6

0.8

1
D

en
si

ty

0.2

0.4

0.6

0.8

1

P
re

ss
u
re

1

1.5

2

2.5

E
n
er

gy

0

0.2

0.4

0.6

0.8

1

x
-v

el
o
ci

ty

−1

−0.8

−0.6

−0.4

−0.2

0

y
-v

el
o
ci

ty

−0.2

−0.1

0

0.1

0.2
z-

ve
lo

ci
ty

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

x

y
-m

ag
n
et

ic
fi
el

d

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.1

0

0.1

0.2

x

z-
m

ag
n
et

ic
fi
el

d

Figure 18. RJ95 shock tube test 4a in 1d with 512 zones at t = 0.15. Density, pressure, energy, velocity components, and
magnetic field components are shown from top left to bottom right.

from a vector potential defined at zone corners as Az =
MAX(A[R0− r], 0) where A = 10−3 and R0 = 0.3. This
field produces a line current through the center of the
loop and a return current along R0, but these features
are unresolved on the grid. Figure 23 shows the 2d result
after two periods.

We also perform a 3d version of this test, shown in
Figure 24, following the setup used in GS08.

6.8. MHD Blast Wave

We performed a 3d version of the 2d magnetized
strong blast wave test as defined in Londrillo & Del
Zanna (2000). The test is performed on a periodic
domain with (LX , LY , LZ) = (1, 3/2, 1) using 200 ×

21

0

0.2

0.4

0.6

0.8

1
D

en
si

ty

0.2

0.4

0.6

0.8

1

P
re

ss
u
re

1

1.5

2

2.5

E
n
er

gy

0

0.2

0.4

0.6

0.8

1

x
-v

el
o
ci

ty

−1

−0.8

−0.6

−0.4

−0.2

0

y
-v

el
o
ci

ty

−0.2

−0.1

0

0.1

0.2
z-

ve
lo

ci
ty

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

x

y
-m

ag
n
et

ic
fi
el

d

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

−0.2

−0.1

0

0.1

0.2

x

z-
m

ag
n
et

ic
fi
el

d

Figure 19. RJ95 shock tube test 4a in 3d with 128 zones at t = 0.15. Density, pressure, energy, velocity components, and
magnetic field components are shown oblique to the grid from top left to bottom right.

300 × 200 zones. The fluid is initialized at rest with
ρ = 1 and a uniform magnetic field (Bx, By, Bz) =
(10/
√

2, 10/
√

2, 0). The fluid has a pressure P = 1, ex-
cept for in the central region within r0 = 0.125 where
P = 100. Figure 25 shows the density, specific kinetic
energy, and magnetic energy of the solution in a slice
through z = 0 at t = 0.02.

6.9. Circularly Polarized Alfvén Wave

As a final MHD test, we show the propagation of a cir-
cular polarized Alfvén wave as described by Tóth (2000).
This test was used by Tóth (2000) to compare the per-
formance of various approaches to maintaining ∇ ·B =
0. This test can be done in one or more dimensions, and
it can be used for convergence testing as it is an exact

22

0.2

0.4

0.6

0.8

1
D

en
si

ty
400 zones

10000 zones

0.2

0.4

0.6

0.8

1

P
re

ss
u
re

400 zones

10000 zones

1

1.5

E
n
er

gy

400 zones

10000 zones

−0.2

0

0.2

0.4

0.6

0.8

x
-v

el
o
ci

ty

400 zones

10000 zones

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

−1.5

−1

−0.5

0

x

y
-v

el
o
ci

ty

400 zones

10000 zones

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

−1

−0.5

0

0.5

1

x

y
-m

ag
n
et

ic
fi
el

d

400 zones

10000 zones

Figure 20. Brio & Wu shock tube test at t = 0.08. The plot for energy is derived from the ratio of pressure to density.
The points represent the solution computed on a 400 zone domain, while the solid line is the solution computed on a 104 zone
domain.

nonlinear solution to the equations of MHD. The grid
is initialized with ρ = 1, Pgas = 0.1, vy = 0.1SIN(2πx),
By = 0.1SIN(2πx), vz = Bz = 0.1COS(2πx), Bx = 1,
and vx = 0. For the 2d tests we rotate these proper-
ties on the grid by an angle of θ = TAN−1(2), while
in 3d tests we perform the same rotation as 3d tests
in §6.1. The grid was a periodic box with LX = [-√

5/2,
√

5/2] and LY = 0.5 ∗ LX with 2N × N zones in
2d and (LX , LY , LZ) = (3, 3/2, 3/2) with 2N × N × N
in 3d. The left panel of figure 26 shows the convergence
of the L1 error vector norm after one wave period for 2d
and 3d tests with increasing resolution, where the hor-
izontal axis represents the number of zones across the
shorter dimensions. The right panel shows, using every
zone in 2d tests, profiles of the in plane transverse com-

ponent of the magnetic field in the rotated frame (B2)
after five wave periods, with the horizontal axis repre-
senting the x coordinate in the rotated reference frame.
The lack of scatter in these plots demonstrates that the
rotated wave fronts remain coherent.

7. CONCLUSIONS

In this paper we present the design and performance
of a new hybrid MPI/OpenMP astrophysical MHD code
called WOMBAT. We are developing WOMBAT for
broad application in astrophysics, but especially in sup-
port of investigations of cosmological turbulence and the
evolution of magnetic fields in galaxy clusters, where
conductive fluid behaviors must be captured with good
fidelity on a very wide range of scales. This require-

23

1922 zones

Density Pressure

v2 B2

0.1

0.2

0.3

P
re

ss
u
re

192 zones

512 zones

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

P
re

ss
u
re

192 zones

512 zones

Figure 21. Images of selected quantities (left) and slices of pressure (right) for the Orszag-Tang vortex test at t = 0.5. Each
quantity is scaled black to white linearly from the minimum value to maximum value for a solution computed on a 192 × 192
zone domain. The slices are at y = -0.1875 (top) and y = - 0.073 (bottom) and compare the solution computed with 192 × 192
zones to a solution computed on a domain with 512 × 512 zones (red lines).

4002 zones

Density Pressure

MachNumber B2

0.5

1

1.5

2

M
ag

n
et

ic
F
ie

ld

y-direction

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

−1

−0.5

0

0.5

1

P
re

ss
u
re

y-direction

Figure 22. Images of selected quantities (left) and slices of magnetic field components (right) for the MHD rotor test at t =
0.15. Each quantity is scaled black to white from the maximum to minimum value for a solution computed on a 400 × 400 zone
domain. The top slice is taken at y = 0 and shows the y-component of the magnetic field, and the bottom slice is taken at x =
0 and shows the x-component of the magnetic field.

24

1282 of 256x128 zones

B2, t= 0 B2, t= 2

Figure 23. Images of magnetic pressure for the advection of a magnetic field loop in two dimensions. The top left image shows
the initial conditions and the right the solution after two periods advected across a domain with 256 × 128 zones. Each image
is scaled linearly from [0,10−6].

4002zones

Before After

Figure 24. Images of magnetic pressure scaled linearly from [0,10−6] for the three-dimensional magnetic field loop advection
test on a 200 × 200 × 300 zone domain. The left image shows the initial conditions and the right image shows the solution
after two periods advected across the domain.

25

2002 zones

Density v2

B2

Figure 25. Images of selected quantities in a two-dimensional slice at z = 0 for the magnetic blast wave test in three dimensions
at t = 0.02. The solution was computed on a domain with 200 × 300 × 200 zones.

ment demands that WOMBAT have exceptional per-
formance and scaling on the latest generation of HPC
systems. We also argue in §1 that the ability to scale
to high thread counts is crucial to maintaining high per-
formance for the target simulations. This is particularly
important for mesh refinement and N-body extensions
of WOMBAT currently in development, where load im-
balance is unavoidable. This work will be presented in
a follow-up to this paper. The optimization strategies
incorporated into WOMBAT are based on the Patch, a
the basic unit of work and domain decomposition within
an MPI rank. Patches are self-contained problems with
their own boundary zones and meta-data necessary to
evolve them in time. These properties make Patches
ideal for presenting independent work to threads within

a rank. We presented the SPMD OpenMP design of
WOMBAT, where only a single OpenMP parallel re-
gion exists for the duration of code execution. Threads
update Patches and perform all boundary communica-
tion collaboratively with the Update and MPI-RMA En-
gines discussed in §4. We present a unique enhancement
of the Cray MPICH library through a co-design effort
with Cray, Inc. and the University of Minnesota. The
“thread-hot” MPI-RMA feature (see §4.1.2) results in
significant speedup of WOMBAT because of its lock-free
design.

We show the performance characteristics of WOM-
BAT on several architectures including the latest gener-
ation of Intel Xeon Phi “Knights Landing” processors.
WOMBAT scaling on these architectures up to 260K

26

101 102 103
10−5

10−4

10−3

10−2

10−1

Number of zones

L
1

E
rr

or
2D

3D

ideal

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−0.1

−5 · 10−2

0

5 · 10−2

0.1

x

B
2

N=128

N=64

N=32

N=16

N=8

Figure 26. Circularly polarized Alfvén wave test. Left: Convergence of the norm of the L1 error vector for the circularly
polarized Alfvén wave tests in two and three dimensions. Right: Profiles of B2 component of magnetic field for increasing
resolutions after propagating five wavelengths across the domain.

threads on Blue Waters, demonstrates its capabilities
and adaptability.

8. ACKNOWLEDGEMENTS

PJM thanks Luiz DeRose (Cray) and John Levesque
(Cray) for their support of this project. JD acknowl-
edges support from the People Programme (Marie
Sklodowska Curie Actions) of the European Unions
Eighth Framework Programme H2020 under REA grant
agreement no. [658912]. PE is supported by the ITC
and Harvard FAS Research Computing. TWJ and BJO

acknowledge support from NSF grant AST1211595. CN
was supported by an NSF Graduate Fellowship un-
der Grant 000039202. We thank Cray, Inc. for use
of their internal systems. Blue Waters computing re-
sources came through a grant from the Great Lakes
Consortium for Petascale Computing. The Blue Waters
sustained-petascale computing project is supported by
the National Science Foundation (awards OCI-0725070
and ACI-1238993) and the state of Illinois. Blue Waters
is a joint effort of the University of Illinois at Urbana-
Champaign and its National Center for Supercomputing
Applications.

APPENDIX

A. MHDTVD

Integrating Equation 5 over a volume element and over a time interval gives

qn+1
i = qni −

∆t
∆x

(
Fn+1/2
i+1/2 − Fn+1/2

i−1/2

)
. (A1)

27

In the MHDTVD method, an approximation to Fn+1/2
i+1/2 , referred to as the modified flux ūn+1/2

i+1/2 , is computed from

ūn+1/2
i+1/2 =

1
2
(
F(qni) + F(qni+1)

)− ∆x
2∆t

fni+1/2, (A2)

fni+1/2 =
7∑
k=1

βk,i+1/2Rn
k,i+1/2, (A3)

βk,i+1/2 = Qk

(
∆tn

∆x
ank,i+1/2 + γk,i+1/2

)
αk,i+1/2 − (gk,i + gk,i+1), (A4)

αk,i+1/2 = Lnk,i+1/2 · (qni+1 − qni), (A5)

γk,i+1/2 =


gk,i+1−gk,i

αk,i+1/2
for αk,i+1/2 6= 0,

0 for αk,i+1/2 = 0
, (A6)

gk,i = SIGN(g̃k,i+1/2) SWEBY limiter

(
g̃k,i+1/2, g̃k,i−1/2

)
, (A7)

g̃k,i+1/2 =
1
2

[
Qk

(
∆tn

∆x
ank,i+1/2

)
−
(

∆tn

∆x
ank,i+1/2

)2
]
αk,i+1/2, (A8)

Qk(χ) =

 χ2

4εk
+ εk for |χ| < 2εk,

|χ| for |χ| ≥ 2εk
. (A9)

The right-handed eigenvector, Rn
k,i+1/2, and characteristics, αk,i+1/2, are from Cargo & Gallice (1997). The primitive

variables at zone interfaces, used to construct Rn
k,i+1/2 and αk,i+1/2, come from the averaging scheme also described

in Cargo & Gallice (1997). The purpose of εk is to add a controlled amount of dissipation into each wave to ensure
that Qk(χ), referred to as the coefficient of numerical viscosity, is continuous and positive (Zheng & Lee 1998). This
eliminates spurious oscillations that can occur when there is an entropy violation across a discontinuity. The value of
εk must satisfy 0 ≤ εk < 0.5, and the optimal value depends on the number of dimensions and complexity of flows in
the calculation.

Under certain circumstances, Roe-type methods like MHDTVD will produce unphysical densities or pressures (Ein-
feldt et al. 1991). A typical solution to this problem is to define floor values for density and pressure that are applied
when exceeded. WOMBAT uses this approach, but additionally offers a set of user-defined floor values, called the
protection floor, that will automatically switch to another Riemann solver that does not have this issue. Similar to
the approach of GS08, we substitute the MHDTVD fluxes with the more diffusive HLL fluxes (Einfeldt et al. 1991)
under the rare conditions when the protection floor is exceeded. The modified flux ūn+1/2

i+1/2 is computed for the HLL
scheme as

ūn+1/2
i+1/2 =

b+F(qni) + b−F(qni+1)
b+ − b− +

b+b−

b+ − b− (qni+1 − qni), (A10)

b+ = MAX{MAX(amax, vnx,i+1 + cnf,i+1), 0}, (A11)

b− = MIN{MIN(amin, vnx,i−1 − cnf,i11), 0}, (A12)

where amax and amin are the maximum and minimum eigenvalues. Note that the HLL fluxes do not rely on an
eigensolution to the MHD equations, which makes them more diffusive than the MHDTVD fluxes. Consequently, we
apply them as infrequently as possible; so only to avoid unphysical behaviors.

REFERENCES

Amer, A., Lu, H., Wei, Y., Balaji, P., & Matsuoka, S.

2015in , ACM, 239–248

Brio, M., & Wu, C. C. 1988, Journal of Computational

Physics, 75, 400

Bryan, G. L., Norman, M. L., O’Shea, B. W., et al. 2014,

ApJS, 211, 19

Cargo, P., & Gallice, G. 1997, J. Comput. Phys., 136, 446

28

Dinan, J., Balaji, P., Buntinas, D., et al. 2016, Concurrency

Computation Practice and Experience,

doi:10.1002/cpe.3758

Dolag, K., & Stasyszyn, F. 2009, MNRAS, 398, 1678

Dosanjh, M. G., Groves, T., Grant, R. E., Brightwell, R., &

Bridges, P. G. 2016, in IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing

(IEEE/ACM CCGrid 2016)

Dubey, A., Almgren, A., Bell, J., et al. 2016, ArXiv

e-prints, arXiv:1610.08833

Einfeldt, B., Roe, P. L., Munz, C. D., & Sjogreen, B. 1991,

Journal of Computational Physics, 92, 273

Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131,

273

Gardiner, T. A., & Stone, J. M. 2005, Journal of

Computational Physics, 205, 509

—. 2008, Journal of Computational Physics, 227, 4123

Hjelm, N. 2014, in Proceedings of the 21st European MPI

Users’ Group Meeting, EuroMPI/ASIA ’14 (New York,

NY, USA: ACM), 123:123–123:124

Hjelm, N. 2016, in Proceedings of the 23rd European MPI

Users’ Group Meeting, EuroMPI 2016 (New York, NY,

USA: ACM), 184–187

Kandalla, K., Mendygral, P., Radcliffe, N., et al. 2016, in

CUG Proceedings

Li, M., Potluri, S., Hamidouche, K., Jose, J., & Panda,

D. K. 2013, in Proceedings of the 20th European MPI

Users’ Group Meeting, ACM, 91–96

Londrillo, P., & Del Zanna, L. 2000, ApJ, 530, 508

Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS,

170, 228

Miniati, F., & Martin, D. F. 2011, ApJS, 195, 5

Mocz, P., Pakmor, R., Springel, V., et al. 2016, MNRAS,

463, 477

Orszag, S. A., & Tang, C.-M. 1979, Journal of Fluid

Mechanics, 90, 129

Potluri, S., Sur, S., Bureddy, D., & Panda, D. K. 2011a, in

European MPI Users’ Group Meeting, Springer, 321–324

Potluri, S., Wang, H., Dhanraj, V., Sur, S., & Panda, D. K.

2011b, in European MPI Users’ Group Meeting,

Springer, 99–109

Price, D. J. 2012, Journal of Computational Physics, 231,

759

Ryu, D., Miniati, F., Jones, T. W., & Frank, A. 1998, ApJ,

509, 244

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., &

Simon, J. B. 2008, ApJS, 178, 137

Teyssier, R. 2002, A&A, 385, 337

Tóth, G. 2000, Journal of Computational Physics, 161, 605

Vaidyanathan, K., Kalamkar, D. D., Pamnany, K., et al.

2015, in Proceedings of the International Conference for

High Performance Computing, Networking, Storage and

Analysis, ACM, 30

Zheng, B., & Lee, C.-H. 1998, Communications in

Nonlinear Science and Numerical Simulations, 3, 82

