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Abstract

We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high
performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI
programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This
design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very
high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance
characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance
design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for
applications demanding exceptional performance.
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1. Introduction

Magnetohydrodynamic (MHD) simulations allow us to
study the dynamics of highly conducting astrophysical fluids
since many astrophysical fluids are highly conductive ionized
plasmas. MHD modeling then allows us to incorporate the
essential consequences of magnetic fields. Even “weak”
magnetic fields, whose Maxwell stresses are subdominant to
inertial and to thermal pressure stresses, can have a major
impact on the development of turbulence and its dissipation on
small scales, on momentum transport, angular momentum and
energy, and on thermal conduction. If the simulations include,
in addition to MHD, the transport of high-energy, non-thermal
“cosmic ray” particle populations, the simulations can model
emission processes involving the cosmic ray interactions with
the bulk fluid and its magnetic field. These include γ-ray by-
products of cosmic ray proton interactions with the bulk fluid
and radio to X-ray emissions from cosmic ray electrons,
including synchrotron radiation.

Since magnetic field properties often derive from the details
of the fluid dynamics over a wide range of scales of interest, it
is essential for simulations to capture the dynamics with high
fidelity over this full range of scales. This is generally a very
intensive and challenging computational task that, despite
much progress in coding and vast improvements in computing
infrastructure, has often remained beyond current capabilities.
That challenge is the motivation for our efforts described here
to develop an MHD code environment that can effectively
utilize and adapt to the coming generations of computational
infrastructure to allow solutions to these pressing astrophysical
problems.

Numerous codes exist for both general purpose and
specific use astrophysical fluid simulations. Some examples
are GADGET (Springel 2005; Dolag & Stasyszyn 2009),

NDSPMHD (Price 2012), AREPO (Springel 2010; Mocz
et al. 2016), ENZO (Bryan et al. 2014), ATHENA (Gardiner &
Stone 2008; Stone et al. 2008), RAMSES (Teyssier 2002;
Fromang et al. 2006), CHARM (Miniati & Martin 2011),
PLUTO (Mignone et al. 2007, 2012), CASTRO (Almgren
et al. 2010), and FLASH (Fryxell et al. 2000; Dubey et al.
2008). Codes like these have been developed over many years
and often have features for adding the effects of gravity,
cosmic-ray transport, non-ideal MHD, cosmic expansion, and
non-adiabatic energy gains and losses, including radiative and
conductive cooling and heating. “Exascale” is the next major
step in the evolution of high-performance computing (HPC),
with systems capable of performing 1018 floating point
operations per second distributed across many levels of
parallelism. Preparing applications for exascale requires a
substantial investment in code re-design and optimization, to
enable the community to leverage the capability of new
architectures and make new scientific breakthroughs. Dubey
et al. (2016) recently presented a survey of the challenges and
potential approaches to modernizing some of the most popular
community codes.
The latest multi-core and many-core processors (CPUs),

such as Intel Xeon and Intel Xeon Phi, feature increasing
core counts per processor with decreasing clock speed
along with increasing single instruction-multiple data (SIMD)
vector lengths. Hence, cache blocking and vectorization
are critical to obtaining good performance from modern
processors. But the increasing core counts also put pressure
on the traditional MPI-only (Message Passing Interface)
parallelization models. Memory consumption from a large
number of independent MPI processes on a node may
become prohibitive. For MHD simulations that develop
substantial load imbalance, possibly through the inclusion of
N-body dynamics or multi-level mesh refinement, balancing
work between MPI ranks is critically important. However,
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the process of balancing work between MPI ranks carries
a potentially significant overhead. This overhead is the
combination of the cost of moving grid data between MPI
ranks and communication of the change in decomposition to
some or all MPI ranks. There are several established strategies
for reducing the overhead, including decomposition meta-data
replication, but these techniques come at the cost of memory
and complexity (Dubey et al. 2016). Programming models
that allow for load balancing with less explicit communication
are greatly needed.

One attractive approach is the hybrid OpenMP/MPI model,
as discussed in Bryan et al. (2014). It allows MPI ranks to hold
larger portions of the world grid. In the context of mesh
refinement, added work due to refinement at any single location
is a lower fraction of a rank’s total load. For many calculations
it could also result in a more symmetric load across MPI ranks
if refinement needs are not confined to a single region. Work
within an MPI rank can be load balanced among threads with
any form of dynamic work scheduling. Finally, on-node
imbalances due to contention of shared resources, such as
cache or bandwidth, also can be mitigated with attention to
thread scheduling. However, typical parallel loop-based
OpenMP designs have shown too little scope (amount of code
effectively threaded) to scale effectively to high thread count.

Modern HPC interconnects often feature low latency/high
bandwidth messaging with network-offloading, which enables
overlap of computation with communication. MPI-RMA
(Remote Memory Access) is a feature added to the MPI
standard in order to expose these capabilities to the user. It
should be possible for an application to drive communication
near hardware limits with a highly efficient MPI-RMA
implementation. However, MPI libraries need high perfor-
mance MPI_THREAD_MULTIPLE implementations for the
hybrid OpenMP/MPI model to include communication
parallelization.

In this paper we present an application design study for a
new grid-based MHD code called WOMBAT.7 The goal of this
project is to address the optimization opportunities discussed
above through a co-design process. In pursuit of this goal, we
seek a base design well suited for uni-grid simulations yet
formulated for complex conditions requiring load balancing.
For the purpose of this paper, we review the base design for
MHD uniform meshes only. WOMBAT development is a
collaboration between Cray Inc. Programming Environments
and the University of Minnesota. Through this collaboration we
developed a design strategy (see Section 2) that adapts to
architectures (CPU and interconnect) using language, OpenMP,
and MPI best practices. We also identified bottlenecks and
optimizations for MPI (Cray MPICH) resulting in significant
performance improvements. Section 3 is a performance review
of WOMBAT on three architectures that can be used as a
model for assessing the quality of any similar implementation.
We discuss specific implementation details in Section 4. Our
design strategy is applicable to many other codes and serves as
a potential path forward for exascale application readiness.

In what follows “KNL” designates the Intel® Xeon® Phi
many-core processor (Knights Landing), “Broadwell” a recent
Intel® Xeon® multi-core processor (Broadwell) and “Inter-
lagos” the AMD OpteronTM multi-core processor (Interlagos).

In all figures, these processors are shown as red, green, and
blue, respectively.

2. Scalable Design Strategy

The key design characteristic of WOMBAT is to subdivide
the problem into completely independent pieces of the world
grid that include their own boundary zones and necessary meta-
data for updating from one time step to the next. We refer to
these independent pieces as “Patches.” This design naturally
accommodates any numerical method with local or semi-local
communication needs.
The concept is similar to data management strategies in other

many MHD codes (see Dubey et al. 2016), but our design takes
a unique approach to processing and scheduling the computa-
tion and communication of Patches. A Patch is a unit of work
that a thread within a WOMBAT MPI process independently
operates on. No assumptions are made on the number of
Patches relative to the number of threads since our design
adapts to this ratio. Patch boundaries also define units of
communication work done with either local (intra-process) or
remote (inter-process) copies. The number of zones in each
dimension of a Patch and the number of them in each
dimension on a rank (and Domain, see Section 2.1) are input
parameters. This allows us to tune them for performance on a
given architecture (see Section 3.2.1).
WOMBAT is written in Fortran 2008. Fortran semantics

make it easy for modern compilers to identify and apply
optimizations, such as vectorization, as long as developers
follow simple rules (see Section 2.2.2). Code modularity,
organization and maintainability benefit from the object-oriented
features available in Fortran 2008. However, overuse of classes
can lead to a loss of optimization opportunities for a compiler.
Thus any performance critical section of WOMBAT is basic
Fortran code working on arrays. The code is constructed from
three main categories of classes: data managers, engines, and
solvers. Data managers do memory management and supporting
functions. Solvers accept data managers as arguments and
update their arrays following whatever numerical methods they
employ. Engines orchestrate parallelism and the book-keeping
and communication requirements for handing data managers to
solvers.
Table 1 shows the hardware constraints on the current and

next generation of HPC systems, alongside the techniques and
optimizations we include in our design strategy to meet these
constraints.

2.1. Domain Decomposition

To construct the Patches, the world grid is decomposed into
N equal-size sub-volumes (Domains), each assigned to an MPI
rank. An MPI rank’s sub-volume is further decomposed into
Patches containing an equal number of zones. Patches in a
Domain communicate boundary data with one another and with
Patches on neighboring ranks. Figure 1 shows a sample 2D
configuration of the Patch–Domain hierarchy across an
arbitrary number of MPI ranks. The figure is centered on a
single MPI rank’s Domain. That rank has eight neighbors
labeled N0 through N7 each with their own Domain. Inside
every MPI rank’s Domain is a 5×5 grid of Patches, labeled
P0 through P24 for the central Domain.
We implement the Patch–Domain design as Fortran classes.

The Domain class is responsible for tracking the MPI rank and
7 WOMBAT is available by request or by visiting http://www.astro.umn.
edu/groups/compastro.
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local or remote Patches that share boundaries with it. This
design can be extended to nested block static or adaptive mesh
refinement (SMR or AMR). In support of that and generic load
balancing between MPI ranks, Patches inside a Domain are
allowed to become active or inactive, meaning member data
structures can be allocated and updated in time, deallocated and
not included in updates. Information about the MPI rank(s) and
remote Patches sharing a boundary with a Patch can be
modified over time, allowing Patches to be moved between
ranks with minimal bookkeeping and communication. In
particular, we do not store global data structures for tracking
decomposition.

2.2. Optimization and Multi-level Parallelization Strategy

Three levels of parallel optimization are common to HPC
systems: SIMD vectorization, intra-process threading (using
OpenMP), and inter-process communication (using MPI).
Cache blocking is an additional optimization that addresses
memory topology on these systems.

2.2.1. Cache Blocking

The Patch design naturally results in cache blocking, which
directly addresses bandwidth limitations. The most popular
CPUs used in HPC today have FLOP/s to byte/s ratios (ratio

of floating point performance to memory bandwidth8) of ;10,
hence algorithms with similar computational intensities run
most efficiently. However, computational intensities that high
are difficult to achieve with stencil-based numerical methods
for solving MHD. Processor caches can mitigate this issue
when used effectively and stencil methods provide good
opportunity for reuse of loaded values between operations.
Hence, good performance requires cache blocking techniques
on all key loops. However, explicitly programmed cache
blocking can be cumbersome, because all performance-critical
nested loops over problem dimensions must be expanded into
higher-dimensional loops with tunable blocking parameters.
Since all solvers in WOMBAT operate on a single Patch,

their computationally intensive loops are all roughly the size of
a Patch. The best Patch size that fits into a level of cache
inherently gets reuse out of a cache (typically the best size fits
into a level 3 (L3) cache but not entirely into level 2 (L2), see
Section 3.2.1).

2.2.2. SIMD Vectorization

Operations on a Patch consist of floating point and data
motion intensive loops. These loops are written to be good
SIMD vectorization candidates following the typical rules of
stride-one access, recurrence free, and limited conditional logic.
To accomplish good maintainability and portability we do not
explicitly program this level of parallelization and leave it to a
compiler to decide if and when to use vectorization. This
usually requires scalar operations be isolated to separate loops
so the remaining work is available for vectorization.

2.2.3. OpenMP Threading

The benefits of hybrid application scaling to high thread
counts were discussed in Section 1. We avoid the bottlenecks
of parallel loop-based OpenMP by arranging WOMBAT such
that only one OpenMP parallel region is present for the
duration of execution. This design presents the threaded region
as a set of completely independent processes, which mimics the
parallelism of MPI. We refer to this approach as SPMD
OpenMP (or single program-multiple data OpenMP) (see also
Kandalla et al. 2016).
To illustrate this design, we show a flow diagram of the main

driver in WOMBAT in Figure 2. A section including MPI
initialization and base object construction is the only work by
the main thread outside the parallel region. After that, every
portion of WOMBAT is executed by all threads collabora-
tively. This includes array allocation/paging, computation,
communication, and even I/O.

Figure 1. Sample 2D decomposition. Regions labeled N[0–7] are the Domain
of each MPI neighbor rank for the MPI rank in the center. Regions labeled P
[0–24] are 25 Patches inside each MPI rank’s Domain.

Table 1
HPC Architecture Constraints and the Optimization Techniques and Features Developed in WOMBAT to Address them

Hardware Constraint Optimization Approach WOMBAT Design

high FLOP/Byte ratio cache blocking Patch
slow scalar + wide vectors vectorization Fortran + vectorization best practices
many cores thread scalability SPMD OpenMP + new Cray MPICH + Patch
distributed architecture RDMA + computation/communication overlap AIO + MPI-RMA + new Cray MPICH + Patch

8 For example, a 1.4 GHz Intel Xeon Phi processor is theoretically able to
achieve ;3 TFLOP/s and has a memory bandwidth of ;450 GB/s to
MCDRAM (90 GB/s to DDR).
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2.2.4. MPI

To allow fine-grained work–communication overlap, the
Patch design results in a larger number of small messages,
compared to traditional approaches which typically use fewer
monolithic boundary exchange messages. This shifts the
communication sensitivity of WOMBAT from simply band-
width to bandwidth and message rate, depending on the
number and size of Patches. A Domain decomposed into
Patches will generate more MPI messages and a higher
aggregate amount of data moved, especially in 3D, due to
added corner and edge boundaries. This extra communication
will later be leveraged for communicating load information and
changes to Patch ownership. Furthermore, in the SPMD
OpenMP approach every thread can participate in the MPI
communication using MPI_THREAD_MULTIPLE.

Most of the MPI communication in WOMBAT uses MPI-
RMA (e.g., MPI_Put(), MPI_Get()), because of the low
overhead possible with a proper MPI-RMA implementation.
MPI-RMA was added to the MPI standard primarily to give
users direct access to the Remote Direct Memory Access
(RDMA) features available on most HPC networks (inter-
connects). PUT and GET operations in MPI-RMA are
inherently non-blocking, and excellent overlap of computation

and communication is possible on networks that also support
network-offloading. While the semantics of MPI-RMA allow
for these performance characteristics, many MPI libraries today
implement MPI-RMA using two-sided communication (e.g.,
Dinan et al. 2016). This adds overhead and reduces the chances
for overlap, leaving MPI-RMA practically unusable for an
HPC application. Recent work in MVAPICH (Potluri et al.
2011a, 2011b; Li et al. 2013) and OpenMPI (Hjelm 2014, 2016)
has corrected that issue on both Infiniband and Cray networks.
In Cray MPICH, MPI-RMA is now based on the low-level
DMAPP library specifically designed for optimal one-sided
communication on Gemini and Aries interconnects. This
implementation has very low overhead, tuned to utilize the
network-offload (Block Transfer Engine or BTE) capability on
Cray XE/XC systems.
Message rate requirements and the SPMD design make it

critically important that multi-threaded MPI-RMA in a given
MPI library performs well. During the design of WOMBAT we
found that no MPI implementation really achieved the
performance that should be possible. This is because most
MPI implementations (including Cray MPICH at the time) use
a global lock to provide thread safety (see also Dosanjh
et al. 2016). This serializes all MPI calls and, more importantly,
most work in the user code around those MPI calls. Through a
co-design approach we have optimized Cray MPICH for high
performance and thread scalable MPI-RMA communication
(see Section 4.1.2). We refer to this new capability as “thread-
hot RMA.” An initial version is available to Cray users starting
with Cray MPICH 7.3.4 with additional enhancements from the
work presented here available in an upcoming release. Other
MPI libraries are also pursuing optimizations for MPI_-
THREAD_MULTIPLE that will make our design performance
portable beyond Cray systems (Amer et al. 2015; Vaidyanathan
et al. 2015).

2.2.5. Asynchronous I/O

WOMBAT uses a custom asynchronous I/O (AIO) library
that allows for overlap of simulation progression and data
writing. If all I/O data can be buffered, data can be written out
with almost no impact on execution time. Some portion of I/O
work done is blocking if buffers are made smaller, which
reduces overall performance.
AIO is implemented as a set of specialized ranks dedicated to

receiving (or sending for read operations) data from a client set
of worker ranks. All threads in the worker ranks package data
into I/O buffers. Non-blocking communication is used to move
data to AIO server ranks, and the AIO ranks then write data out
as they come in. The full system can be tuned for I/O and
overlap performance by adjusting the total number of AIO
server ranks.

3. Performance

We measure the performance of WOMBAT for 3D MHD
calculations using the directionally un-split MHDTVD solver
described in Section 5. Single-node tests focus on the impact of
vectorization on overall execution and the parallel efficiency of
the SPMD OpenMP technique. Multi-node tests at scale
measure the performance of the full suite of parallelization
strategies, including off-node communication, and how they
interact. We stress that the problem sizes used for most
experiments presented here were selected to show overheads in

Figure 2. Flow diagram for the main driver in WOMBAT. The scope of the
single OpenMP parallel region is outlined with a dashed box.
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WOMBAT, and in particular communication. This also closely
follows real-world simulations run on production systems.

Table 2 summarizes the platforms used for performance
experiments. We used Blue Waters (Cray XE) at the NCSA for
very large weak scaling studies. The remaining systems are
internal configurations at Cray Inc. We use the Cray Compiler
(CCE) in all experiments. Table 3 shows specific test information
about each processor. We used the new Cray MPICH library with
the “thread-hot RMA” feature in all tests unless otherwise noted.

All experiments involving KNL were run with nodes
configured in so-called “quadrant” Non-Uniform Memory
Access (NUMA) mode with high bandwidth memory (on
package) configured as a 16 GB L3 cache.

3.1. Single-node Performance by Architecture

3.1.1. SIMD Scaling

We measure the impact of increasing vector length (VL)
from 64 to 512 bits on KNL.9 The problem size is a 17×42

Domain of Patches each with 483 zones updated by a single
MPI rank with 68 threads.

Figure 3 shows the strong scaling with increasing VL on a
single node of the XCKNL system. The time to perform a single
time step update is reduced approximately by a factor of 2
going from 64 and 256 bit vectors. The final step to 512 bit
vectors continues to show improved performance, but the effect
has been reduced to only a ;19% speedup. Factors that affect
the speedup from vectorization are the amount of vector versus
scalar code executed, the efficiency of the vector code
generated by the compiler, and the memory bandwidth avai-
lable to provide data to the cores. Overall, vectorization speeds
up WOMBAT by almost a factor of 2.5X on KNL processors.
The speedup is roughly consistent with Amdahl’s Law,
assuming the fraction of execution time benefiting from
parallelization p≈0.65.

Broadwell has accessible hardware performance counters for
floating point operations that can be measured with a number of
performance tools, such as PAPI or CrayPAT. Table 4 shows
the quality of vectorization relative to a scalar build of

WOMBAT. We also show the breakdown of scalar and vector
operations for the Intel and GNU compilers. Vectorization
with CCE reduces total double precision (DP) floating point
instruction count by ∼71%. 79% of all floating point
operations are vector. Intel produces a similar amount of
vector instructions but also lower performance. The perfor-
mance difference is due to much lower translation lookaside
buffer (TLB) utilization despite using 2 Megabyte huge pages.
We intend to file a performance bug with Intel on this issue and
it will be corrected in later releases. The GNU compiler is
unable to produce any vector instructions.

Table 2
Test Platforms Used in the Performance Studies and Their Characteristics

System Title Architecture Interconnect Topology CPU VL [bits] Cores per Node

Blue Waters Cray XE Cray Gemini 3d torus AMD OpteronTM 6276 “Interlagos” @ 2.3 GHz 256 16
XEIL Cray XE Cray Gemini 3d torus AMD OpteronTM 6281 “Interlagos” @ 2.5 GHz 256 16
XCBDW Cray XC Cray Aries dragonfly Intel® Xeon® E5-2695 “Broadwell” @ 2.5 GHz 256 36
XCKNL Cray XC Cray Aries dragonfly Intel® Xeon PhiTM 7250 “KNL” @ 1.4 GHz 512 68

Note. We mostly use 64 cores on KNL systems to make scaling studies simpler multiples from lower core counts.

Table 3
Processor Compilation and Placement Notes

CPU Compilation Flags Notes

Interlagos -O vector3 -h preferred_vector_width=256 Only one thread/process per floating point unit
Broadwell defaults Only one thread/process per core (no hardware threads used)
KNL defaults Only one thread/process per core (no hardware threads used)

Figure 3. Time per update in seconds for increasing VL (strong scaling) on
KNL with 68 threads.

Table 4
Effect of Vectorization on Floating Point Instruction Count on Broadwell for a

Single Thread Running a 23×323 Problem for 100 Time Steps

Compiler
109 Sca-
lar Ops.

109 256 B
SIMD Ops.

sec/
update

% of
DP Peak

CCE 8.5.4 (scalar) 327 0 1.87 6.6
CCE 8.5.4 20 74 0.96 14.1
Intel 17.0.1.132 15 75 1.67 8.1
GNU 6.2.0 320 0 1.84 6.6

9 To vary the types of vectors, we use the CCE compiler flag “-h
preferred_vector_width = X,” where X = {128, 256, 512}. For scalar 64 bit
vectors we use “-O vector0.”
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3.1.2. Thread Scaling

We show the thread strong scaling speedup of WOMBAT on
the three architectures presented here in Figure 4 with the
problem sizes given in Table 5. The code shows excellent
speedup with threads on all the architectures. The speedup from
threads on KNL is ∼40X at 68 threads. The “turbo” on
Broadwell increases performance for small thread numbers
(green line versus dashed green line). On both Interlagos and
Broadwell there is notable loss of scaling once the process has
threads spanning beyond a single NUMA domain. On
Interlagos this is at 4 threads, because each Interlagos processor
is made up of two “Bulldozer” modules for a total of four
NUMA nodes on a dual socket XE node. A KNL node
configured in quadrant mode has only a single NUMA node,
and the deviation from ideal scaling is moved to much higher
thread counts. Profiles showed that the cost of thread
synchronization rising at these thread counts, but there is the
additional factor of a finite amount of bandwidth available on
the processor. Both of these account for most of the reduction
in performance from ideal.

3.2. Performance at Scale by Architecture

Off-node components of an application, such as network
latency and bandwidth, can modify its behavior and how it
should be tuned. We present a multi-node Patch size
optimization study for WOMBAT, and we also demonstrate
the weak and strong scaling capabilities of WOMBAT out to
large node counts.

3.2.1. Patch Size Optimization

In Section 2.1 we described how Patches are logically
assembled to produce any grid size per rank. We study
performance with Patch size also allowing the mixture of MPI

ranks to OpenMP threads to vary at a scale of 27 nodes. This
number is used because any configuration of MPI ranks to
threads at that scale will have unique neighbors in 3D. This
ensures that the MPI work is saturated and performance is not
skewed. We use “PPN” to denote the number of MPI processes
per node with threads placed on all cores. The total number of
zones across each Patch size was held approximately constant
within a system type. We chose the problem setup so update-
times were held at ;10 s. This is sufficiently large to expect
throughput values to be near their absolute peak but still
include overhead sensitivity.
Figure 5 shows the throughput on each architecture given by

the number of zones per second each node can update. We can
identify the maximum throughput each system can achieve
for these problem setups. XEKNL nodes are able to update
6×106 zones/s/node at peak compared 4.5×106 zones/
s/node on XCBDW and 2×106 zones/s/node on XEIL. This
demonstrates the ability of our approach to adapt to the unique
many-core design of KNL.
The optimal Patch size is not uniform across systems.

XCBDW has the smallest optimal Patch size of 323. The optimal
Patch size for XEIL is 403, and XCKNL has an optimal Patch
size ;503. The performance on either side of the optimal size
drops off but not by the same amount on each system. Patch
sizes smaller than the optimal size have lower performance due
to reduced vectorization efficiency, and larger sizes have lower
performance due to spilling out of L3 on both Interlagos and
Broadwell. KNL has the largest SIMD vector size, which
explains why it has the largest optimal Patch size. Overheads
appear to affect Interlagos more than Broadwell. This favors
slightly larger Patches on Interlagos despite having the same
SIMD vector length as Broadwell. The cache blocking
properties of the Patch design discussed in Section 2.2.1 no
longer function as intended for large Patches. On KNL the
performance loss is not as dramatic, with exceptions at high
thread count. This is due to the 16 GB L3 cache.
Both XEIL and XCBDW show lowest performance with only

a single rank per node packed with threads. This is largely due
to the NUMA issues discussed in Section 3.1.2. In both of these
cases, once the number of MPI processes per node matches the
number of NUMA nodes on a node there is very little spread in
performance at the optimal Patch size. In the case of XCKNL

performance does not vary much until the Patch size is 503 or
greater. While the absolute best performance on XCKNL is with
16 PPN (∼6.5×106 zones/s/node), there is still significant
performance at 4 PPN (∼6×106 zones/s/node). At a high
level, a fixed grid calculation should not perform any different
exchanging ranks for threads if both MPI and OpenMP are well
implemented and hardware limitations are not present. The
SPMD design in WOMBAT nearly achieves this.

3.2.2. Weak Scaling

Figure 6 shows the weak scaling on three architectures at
different values of PPN for the problem sizes given in Table 6.
For XCIL and XEBDW the best performance and scaling is
closely matched between a single MPI rank per NUMA node or
pure MPI, which follows the conclusions in Section 3.2.1. The
XCKNL systems has best performance and scaling at 4 and 8
PPN. Relative to a single node, XEIL has a 93% efficiency up to
150 nodes at 4 PPN, and XCBDW at 2 PPN has a 87%
efficiency up to 512 nodes. Remarkably XCKNL has 89%

Figure 4. Execution time per zone over number of threads (strong scaling) for
Interlagos (blue), Broadwell (green) and KNL (red).

Table 5
Number of Patches in Each Direction of the Domain and Number of Zones per

Patch Used by Each Architecture in the Thread Strong Scaling Test

CPU Domain Size Patch Size

Interlagos 8×7×4 403

Broadwell 122×8 323

KNL 83 483
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efficency at 648 nodes (41,472 threads) with 4 PPN relative to
a single node run.

The lowest performance at scale on all systems is with a
single rank per node. The increases in update times are due to
increasing amounts of off-node communication a rank
encounters and imperfect overlap of communication with
computation. Between 3 and 27 nodes, off-node communica-
tion cost is saturated, and update times are nearly flat for larger
node counts. We conclude that WOMBAT has excellent weak
scaling on all systems with the optimal configuration despite
the relatively small problem size chosen.

We show weak scaling on Blue Waters in Figure 7 for two
values of PPN and problem sizes. We limit each run to just 10
time steps. The 1 PPN runs scale out to 16,224 nodes (259,584
threads) with a world grid containing ;66 billion zones.
WOMBAT scales well with 60% efficiency at 16,224 nodes for
1 PPN and 75% efficiency at 4096 nodes for 4 PPN relative to
single-node runs.

There are several spikes of increased update times. We
hypothesize this is due to network contention with both other
running applications and with WOMBAT itself on the very
large 3D torus topology. Runs on the smaller dedicate XEIL

system do not show these features. In the future, we intend to
make use of the topology-aware scheduling capability provided
by the NCSA, and we expect this to improve performance and
reduce the contention opportunities.

The right panel of Figure 8 shows the impact of the “thread-
hot RMA” capability that will be included in an upcoming
release of Cray MPICH. We show weak scaling on XCKNL to
125 nodes with 4 PPN using the same problem setup for weak
scaling described above. This feature produces a 17% speedup
over Cray MPICH 7.3.1.

3.2.3. Strong Scaling

The left panel of Figure 8 shows the strong scaling of
WOMBAT. We defined the problem size for each system so
that the time per update is limited to ∼60 s (see Table 7).
Performance closely follows the theoretical speedup over 2
orders of magnitude in node count, with XCBDW showing a
236X speedup at 384 nodes. The deviations are due to
overheads exposed as update times at scale fall at or below
0.3 s. We reduced the Patch size on XCBDW by half and on
XCKNL by a quarter at the largest scale, for example.

3.2.4. Thread Scheduling at Scale

We show the impact of OpenMP scheduling in Figure 9. In
this experiment we modified the thread scheduling for just a
single loop in the Update Engine (see Section 4.1) that drives
updates over Patches. We run a balanced (Patch count divides
evenly into thread count) and an imbalanced problem with the
modified code and original code. Four MPI ranks per node on
27 nodes each with 16 threads update 40 (imbalanced) or 32

Figure 5. Performance in million zones per second per node over number of zones along one patch dimension. We show Interlagos (blue, top left) from the XEIL

system, Broadwell (green, top right) from the XCBDW system and KNL (red, bottom) from the XCKNL system at different values of MPI processes per node (PPN).
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(balanced) Patches, each with 483 zones on the XCKNL system.
Both problems show near optimal throughput with the
GUIDED schedule and lower performance with STATIC.
Our SPMD OpenMP design has very few thread barriers, and
using a STATIC schedule assumes threads are roughly
synchronized to be efficient.

4. Design Details

4.1. Update Engine

In our design, the Update Engine is responsible for
scheduling computation and communication across threads
for any solver. It accepts a Domain and iterates over Patches,
exchanging messages and partitioning the update work through
the specified solver until all Patches report back as completed.
To allow for iterative or sub-cycling solvers, it is not necessary
that a Patch be updated completely for the current time step
after only a single pass through a solver.

Figure 10 shows a schematic of the Update Engine. It is
contained inside the higher level OpenMP parallel region
shown in Figure 2, and all threads call it with the same input
data and requested solver class. The outer while loop allows for
iterative solvers that require any arbitrary number of passes
(including messaging) to complete for a time step. The inner
while loop contains the work necessary to drive both

Figure 6. Time per update over number of full nodes (weak scaling) for XEIL (blue, top left), XCBDW (green, top right) and XCKNL (red, bottom) at different values of
MPI processes per node (PPN).

Table 6
Weak Scaling Test Setup: the Number of Patches in Each Direction of the

Domain and Number of Zones per Patch Used for Each System

System Patches per Node Patch Size

XEIL 4×4×4 403

XCBDW 6×62 323

XCKNL 8×42 483

Figure 7. Weak scaling on Blue Waters for two different values of MPI
processes per node (PPN) and problem size.
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communication and updates through the requested solver. The
work includes packing (unpacking) boundary data into (out of)
contiguous buffers, used for either local copies within a rank or
MPI transfers between ranks. There is additional work for
signaling and data transfer between MPI ranks and updating
Patches with resolved boundaries through the requested solver.
The DomainSolver class manages all book-keeping related to
marking individual boundaries for any affected Patch as
resolved/unresolved. It also tracks grids within a Patch as
incrementally or completely updated.

An important optimization in this design relates to how
boundary data is exchanged between Patches contained in the
same MPI rank. An instance of the Patch class includes a buffer
for incoming boundary data (there is no matching buffer for
outgoing data). This buffer is only used for boundary data

coming from another local Patch. With the Domain class, data
destined for a local Patch is directly packed into the buffer of
the destination Patch. The buffer is later unpacked, along with

Figure 8. Left: update time per zone over number of nodes (strong scaling) for XEIL (blue), XCBDW (green) and XCKNL (red) at constant problem size. Right: update
time in seconds over number of nodes (strong scaling) for Cray MPICH 7.3.1 (light red) and new lock optimized Cray MPICH (dark red) on XCKNL with 68 threads.

Table 7
Strong Scaling Test Setup

System PPN World Grid Patches Base Patch Size

XEIL 4 14×8×12 403

XCBDW 2 48×122 323

XCKNL 2 32×16×12 403

Figure 9. Comparison between the OpenMP GUIDED loop schedule and the
STATIC schedule as applied to the DomainSolver class Patch update loop for a
balanced (even work per thread) and imbalanced problems.

Figure 10. Generalized communication/Update Engine.
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any non-local boundary data, into the Patch grid boundary
zones. This optimization takes advantage of the shared memory
aspect of OpenMP, completing local Patch boundary exchange
without calling MPI or excessive buffering. Some buffering is
necessary to minimize contention between threads attempting
to progress the same Patch. A single node run can completely
avoid calling MPI with this feature by using threads on all
cores.

4.1.1. MPI-RMA Engine

The MPI-RMA Engine handles non-local communication
between Patches. It is generic enough to manage communica-
tion of any type of data of a wide range of message lengths with
memory overheads and intensity on the network that is run-
time tunable. The strategy for the MPI-RMA engine was to
remove all explicit synchronization between MPI ranks and
utilize all threads for both message packing/unpacking and
initiation of network transfers. We use a single passive
exposure epoch with MPI-RMA. The passive epoch starts
with ranks calling MPI_Win_lock() for each rank it will
communicate with. The communication strategy in WOMBAT
does not use protections between ranks, and the lock argument
to MPI_Win_lock() is always set to MPI_LOCK_SHARED.
Locking and unlocking for RMA exposure is moved outside
the time loop, which essentially removes their cost in exchange
for minimal overhead introduced by a signaling scheme.

Figure 11 shows an overview of the steps in the MPI-RMA
Engine. Operations from the point of view of both a source and
neighbor rank are shown in time. Note that all source ranks are
also a neighbor rank, meaning that the steps are symmetric. The
process begins with a source rank packing some (not all)
boundary data from a Patch into a buffer. The rank then sends
an 8 byte signal to the neighbor rank with MPI_Put() indicating
the size of the message that has been packed. At some point the
neighbor rank starts to poll on the local address where this
signal is to be deposited waiting for the value to become
something other than the initial state. Reading this address must
be done carefully so as not to allow the compiler to cache the
value in a register. We do this by performing the read on the
signal address from a simple C routine, designed to prevent any
register caching from the calling Fortran code. Once the signal
value is modified, the value is interpreted as the message
length. If it is zero there is no message to transfer, which can
happen for a variety of reasons due to the generic messaging
property of the MPI-RMA Engine. If the value is greater than
zero the neighbor rank initiates a network transfer with an

MPI_Get(). While the network transfer is in flight, both the
source and neighbor rank do other communication or
computation work. At some point later the neighbor rank
needs the transfer to complete and calls MPI_Win_flush(). The
message is then unpacked, and the neighbor rank then sends a
signal pack to the source rank indicating that the transfer is
done and the source buffer can be freely modified. The source
rank eventually polls on that signal before it can repeat the full
process over again.
We note that an alternative implementation of this cycle

could be done entirely with MPI_Put(). In such a design, a
MPI_Put() call would immediately move data to the destination
rank completed sometime later with MPI_Win_flush(). Then
the initial MPI_Put() above is used to signal that data is in the
destination buffer. We did not use this design because it has the
potential for generating more intense many-to-one traffic
patterns, which can lead to degraded performance on most
HPC interconnects.
The MPI-RMA Engine cycle applies to each segment of the

single communication buffer that was created for the RMA
window with MPI_Win_Allocate(). Multiple segments in this
buffer allow for many unique messages to be exchanged with
neighbor ranks. They also present potential thread parallelism
for communication. The MPI-RMA Engine cycle is self-
contained and can be applied to any number of independent
messages to be exchanged with minimal contention or
protection required between them. Multiple threads can
therefore drive the engine entirely independently as long as
they operate on separate buffer segments.
The single buffer attached to the RMA window in

WOMBAT is decomposed into multiple regions, each available
for communicating Patch boundary data. Figure 12 shows the

Figure 11. MPI-RMA Engine cycle.

Figure 12. Anatomy of the buffer attached to the RMA window.
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anatomy of this buffer with an example of a 2D Cartesian
domain with nine MPI ranks (similar to the domain structure in
Figure 1). The figure begins at the top looking at the entire
RMA buffer logically separated into equal size segments for
each of the eight neighbors (labeled N0 through N7) any rank
might have. Note that it is possible for some of the logical
neighbors to be the same MPI rank if the world grid is periodic.
Each of these segments is further divided based on a run-time
tunable value for the number of “mailboxes” dedicated to each
neighbor rank. Increasing the number of mailboxes has the
effect of putting more network transfers in-flight at any
moment, which can reduce the number of iterations in the
Engine. Each of these mailboxes is large enough to buffer all
boundary data to and from one Patch (size is doubled for send
and receive). It is not necessary or common that these data be
from the same source Patch. In one of these mailboxes, there
are eight boundary segments corresponding to the four edges
and four corners that will be communicated in 2D from a Patch
labeled B0 through B7. In a single section of a boundary
segment, there are four distinct sections. The first two are each
8 bytes in length and are used for the incoming and outgoing
signals described above and in Figure 11. The next “header”
section is used to encode descriptive data about the message
payload. This information includes identifying information for
the Patch that should receive these boundary data. The header
can be leveraged for performing other communication that
might be useful to exchange between rank on a regular basis,
such as load imbalance statistics or changes in the ownership of
a given Patch. The final section in the boundary segment is the
message payload.

The MPI-RMA Engine also has methods for initiating and
completing non-blocking global reductions. They are used to
compute time step sizes across all MPI ranks. Our implementa-
tion delays time step calculation by one step in order to overlap
the collective with work.

4.1.2. MPI-RMA Thread Optimization in Cray MPICH

In the SPMD OpenMP model, threads do their computation,
message sending, and message completion asynchronously, so
contention on the interconnect resources becomes relevant to
performance. On Cray XC systems the Aries interconnect
provides 128 hardware “lanes” called communication domains
(CDMs) for concurrent message transfers and synchronizations
(although MPI does not always make use of all of them). The
MPI library assigns these CDMs either statically to threads the
first time a thread makes an MPI call, or dynamically each time
a message is sent or completed.

In SPMD OpenMP, static assignment of CDMs to threads is
no longer feasible, because it provides no means for the MPI
library to dynamically minimize contention. For example, if a
thread needs to complete all messages targeting a specific
remote rank, it may need access to several CDMs that have
been statically assigned to other threads before. Safe access to
these CDMs could be handled with a mutex, but doing so can
force other threads to wait for access to the CDM before
sending a message. Hence, dynamic allocation of CDMs is
required to minimize overhead from CDM contention and
maximize performance.

We have adapted Cray’s MPI-RMA implementation to use
lock-free dynamic allocation of CDMs. It is now designed
specifically to minimize overhead due to CDM assignment and
maximize performance for SPMD approaches. The library

guarantees contention-free communication as long as the
number of concurrent requests to send and/or complete a
message does not exceed the available number CDMs.

5. Numerical Methods

For an initial implementation in the code design discussed
above we use a second-order, directionally un-split version of
the non-relativistic ideal MHD solver described in RJ95 and
Ryu et al. (1998) referred to as MHDTVD. This new
implementation follows the CTU+CT scheme, described in
Gardiner & Stone (2005) (hereafter GS05) and Gardiner &
Stone (2008) (hereafter GS08), modified for the MHDTVD
solver. The algorithm outlined here solves the equations of
MHD neglecting charge separation between ions and electrons,
electrical resistivity, viscosity, and non-adiabatic processes,
such as thermal conduction. With these assumptions the ideal
MHD equations are
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where γ is the plasma adiabatic index. Following the
convention of RJ95, we have selected our units such that 4π
does not appear in these equations. For a one-dimensional flow
along the X direction, Equations (1)–(4) can be written in the
conservative form
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A source term vector can be added to Equation (5) to include
additional physics, such as gravity, geometry corrections, cooling,
and cosmic-ray feedback. This system of equations is hyperbolic
under the definition that the Jacobian matrix, = ¶ ¶A F q, has all
real eigenvalues and a complete set of right eigenvectors. This
system is not strictly hyperbolic, however, due to conditions that
can produce degenerate eigenvalues. The seven eigenvalues
a1,7=vx±cf, a2,6=vx±ca, a3,5=vx±cs, and a4=vx corre-
spond to three MHD wave families and an entropy mode. The
characteristic wave speeds are
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where the sound speed is defined as g r=a P . One of the
difficulties in solving Equation (5) is that some of the
eigenvalues will coincide in limiting cases and special care
must be taken to avoid singularities around points where
Bx=0 or By=Bz=0 (RJ95). We summarize the one-
dimensional MHDTVD algorithm in Section A.

5.1. MHD in Two Dimensions

The 2D directionally un-split update closely follows the
steps for the CTU+CT scheme described in GS05. Our
implementation utilizes five boundary zones, and requires only
one boundary exchange per time step for both state variables
and zone corner EMFs. Given a time step Δt, the steps in the
algorithm are:

Step1. Compute the directionally split fluxes in both X and
Y directions using initial states qn from Equation (14)
for a time step Δt.

Step2. Compute a zone-centered reference EMF for use in
the mid-time step constrained transport update of the
face-centered magnetic field. The EMF is given by

´ + ´v B v Bx y y x with each input derived from the
initial state vector qn.

Step3. Using the upwinded algorithm in GS05, compute
EMF values at zone corners using the By and Bx

fluxes from the X and Y passes from Step 1 and the
reference EMF from Step 2.

Step4. Update the face centered magnetic field bn to +bn 1 2

from the EMFs in Step 3 over Δt/2.

Step5. Update the zone centered state vector from the initial
states qn to +qx

n 1 2 using fluxes from the Y pass in
Step 1 applied over Δt/2. Include the ∇·B source
term vector described by GS05.

Step6. Using the preconditioned state +qx
n 1 2, compute

fluxes along X from Equation (14) for a time step Δt.
Step7. Repeat steps 5 and 6 for the Y direction.
Step8. Compute a zone-centered reference EMF for use in

the final CT update of the face-centered magnetic
field. The EMF is given by ´ + ´v B v Bx y y x with
vx and vy coming from an un-split update of qn to

+qn 1 2 using the fluxes from Steps 6 and 7.
Step9. Using the upwinded algorithm in GS05, compute

EMF values at zone corners using the By and Bx

fluxes from the X and Y passes from Steps 6 and 7
and the reference EMF from Step 8.

Step10. Use an un-split update of the state vector qn to +qn 1

using fluxes from Steps 6 and 7 applied over Δt.
Step11. Update the face centered magnetic field bn to +bn 1

from the EMFs in Step 9 over Δt. Update the zone
centered magnetic field from averages of the face
centered magnetic field as described in GS05.

5.2. MHD in Three Dimensions

The 3D un-split update is based on the 6-solve algorithm
described in GS08. We again utilize five boundary zones as
described above for 2D. The steps in the 3D algorithm are:

Step1. Compute the directionally split fluxes in the X, Y and
Z directions using initial states qn from Equation (14)
for a time step Δt.

Step2. Compute zone-centered reference EMFs for use in
the mid-time step constrained transport update of the
face-centered magnetic field using inputs derived
from the initial state vector qn.

Step3. Using the upwinded algorithm in GS08, compute
EMF values at zone corners using the magnetic
fluxes from the directional passes from Step 1 and
the reference EMF from Step 2.

Step4. Update the face centered magnetic field bn to +bn 1 2

from the EMFs in Step 3 over Δt/2.
Step5. Update the zone centered state vector from the initial

states qn to +qx
n 1 2 with an un-split update using

fluxes from the Y and Z passes in Step 1 applied over
Δt/2. Include the∇·B source term vector described
by GS08.

Step6. Using the preconditioned state +qx
n 1 2, compute

fluxes along X from Equation (14) for a time step Δt.
Step7. Repeat steps 5 and 6 for the Y and Z directions using

the appropriate transverse fluxes from Step 1.
Step8. Compute zone-centered reference EMFs for use in

the final CT update of the face-centered magnetic
field. Velocity values come from an un-split update
of qn to +qn 1 2 using the fluxes from Steps 6 and 7.

Step9. Using the upwinded algorithm in GS08, compute
EMF values at zone corners using the magnetic
fluxes from the directional passes from Steps 6 and 7
and the reference EMF from Step 8.

Step10. Use an un-split update of the state vector qn to +qn 1

using fluxes from Steps 6 and 7 applied over Δt.
Step11. Update the face centered magnetic field bn to +bn 1

from the EMFs in Step 9 over Δt. Update the zone
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centered magnetic field from averages of the face
centered magnetic field as described in GS08.

6. Test Calculations

6.1. Linear Wave Convergence

We performed linear wave convergence tests using eigenvec-
tors of the Roe matrices for hydrodynamics and MHD following
the setup used by GS05. For one-dimensional tests, we use a
periodic domain L=1 divided into N zones containing a
background fluid with ρ=1, P=3/5, and γ=5/3. The
background is at rest for shear and entropy waves, otherwise
vx = 1. For hydrodynamic waves (sound, vy and vz shear, and
entropy modes), Bx=By=Bz=0, while the background for
MHD waves (slow, Alfvén, fast, and entropy modes) has
magnetic field components = = =B B B1, 2 , 1 2x y z . A
sinusoidal perturbation is applied to this background state, such
that the initial state vector is given by ¯ ( )p= +q q RA xcos 2k0 0 ,
where q̄ is the background state, A0=10−6 is the amplitude, and
Rk is the right eigenvector for the wave mode k.

Each wave is propagated for one wavelength, and then the
error in the solution is computed using the L1 error vector
averaged over every zone i, defined by ∣ ∣d = å --q q qN i i i

1
,0 .

Increasing the number of zones up to N=1024, the solution
for each wave mode in 1D converges with second-order
accuracy as seen by the norm of the L1 error vector in
Figure 13.

We also tested the convergence of MHD waves propagating
oblique to a 3D grid, following the setup in GS08. The wave
is initialized rotated with respect to a computational grid of
size (LX, LY, LZ)=(3, 3/2, 3/2) with 2N×N×N zones,
such that the wave vector is ( )=k 1 3, 2 3, 2 3 . The face-
centered magnetic field components are initialized via a vector
potential defined at the corners of the grid zones, and then
zone-centered magnetic field values are averaged from face-
centered fields. After propagating one wavelength, the L1
error vector is computed with respect to the initial conditions.
The convergence with increasing resolution is shown in
Figure 13.

6.2. RJ95 2a

The next set of tests are of the shock-tube setup 2a from
RJ95. The left-hand state was initialized with (ρ, vx, vy, vz, By,
Bz, P)=[1.08, 1.2, 0.01, 3.6/(4π)1/2, 2/(4π)1/2, 0.95], and the
right-hand state with [1, 0, 0, 0, 4/(4π)1/2, 2/(4π)1/2, 1]. For
this test Bx=2/(4π)1/2. Figures 14 and 15 shows the evolved
grid at t = 0.2 in 1d and 3d respectively. The shock normal is
rotated 45° out of all primary planes in 3D.

6.3. RJ95 4a

Figures 16 and 17 show the results at t = 0.15 of the 4a setup
from RJ95. Figure 16 is the 1D result, and Figure 17 is the 3D
result with the shock normal rotated 45° out of all primary
planes. The left-hand state was initialized with (ρ, vx, vy, vz, By,
Bz, P)=[1, 0, 0, 0, 1, 0, 1], and the right-hand state with [0.2,
0, 0, 0, 0, 0, 0.1]. For this test Bx=1.

6.4. Brio & Wu Shock Tube

We performed the well-known MHD shock tube test of Brio
& Wu (1988) on a 1D domain. The left-hand state is initialized
with the state vector (ρ, vx, vy, vz, By, Bz, P)=(1.0, 0, 0, 0, 1.0,
0, 1.0), while the initial right-hand state is (ρ, vx, vy, vz, By, Bz,
P)=(0.125, 0, 0, 0, −1.0, 0, 0.1). Throughout the domain,
Bx = 0.75, while the adiabatic index γ=2. The solution
computed on a domain with 400 zones at t = 0.08 compared to
a better converged solution computed with 104 zones is shown
in Figure 18.

Figure 13. Convergence of the norm of the L1 error vector for wave modes
after propagating one wavelength. The dotted line shows a slope of −2 for
comparison. The top plot shows hydrodynamic wave modes in 1D. The middle
plot shows MHD wave modes in 1D. The bottom plot shows MHD wave
modes in 3D oblique to the grid.
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6.5. Orszag–Tang Vortex

A very common test in 2D for an MHD code is the
compressible Orszag–Tang vortex. This problem was first
studied by Orszag & Tang (1979) and is now used as a

standard comparison of MHD codes (Stone et al. 2008). The
setup for this problem uses a periodic box with LX = [−0.5,
0.5] and LY = [−0.5, 0.5] and 192×192 zones. Uniform
density and pressure are initialized throughout the grid with

Figure 14. RJ95 shock tube test 2a in 1D with 512 zones at t=0.2. Slices of density, pressure, energy, velocity components, and magnetic field components are
shown from top left to bottom right.
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ρ=25/36π, P=5/12π and γ=5/3, giving a sound speed
of cs=1. The velocity was initialized as ( )p= -v v ysin 2x 0
and ( )p=v v xsin 2y 0 , where v0=1. The magnetic field
along zone faces was derived from the vector potential
defined at zone corners [ ( ) ( )]p p p= +A B x ycos 4 2 cos 2 2z 0 ,

where ( )p=B 1 40
1 2, with =  ´b A. Figure 19

shows the resulting density, gas pressure, specific kinetic
energy, and magnetic pressure at t = 0.5, as well
as slices of the gas pressure at y=−0.0723 and y=
−0.1875.

Figure 15. RJ95 shock tube test 2a in 3D with 128 zones at t=0.2. Slices of density, pressure, energy, velocity components, and magnetic field components are
shown oblique to the grid from top left to bottom right.
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6.6. MHD Rotor

Another common MHD test problem in 2D is that of a
rotating disk in a magnetized medium (Balsara & Spicer 1999).
We follow the setup used by Stone et al. (2008) and defined in
Tóth (2000) as “Rotor Problem 1” on a periodic domain with

400×400 zones. Distributions of density, pressure, Mach
number, and magnetic pressure for the solution at t = 0.15 is
shown in Figure 20, along with slices of the y-component of the
magnetic field at y=0 and the x-component of the magnetic
field at x=0.

Figure 16. RJ95 shock tube test 4a in 1D with 512 zones at t=0.15. Density, pressure, energy, velocity components, and magnetic field components are shown from
top left to bottom right.
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6.7. Advection of a Field Loop

A powerful test of an MHD code’s ability to keep · =B 0
is the advection of a weak magnetic field loop. We use a setup
similar to that of GS05 for a 2D calculation. A periodic box
with LX = [−1., 1.] and LY [−0.5, 0.5] over 256×128 zones

was initialized with ρ = 1, Pgas = 1, vx=2, and vy=0.5. The
magnetic field was derived from a vector potential defined at
zone corners as ( [ ] )= -A A R rMAX , 0z 0 where A=10−3

and R0 = 0.3. This field produces a line current through the
center of the loop and a return current along R0, but these

Figure 17. RJ95 shock tube test 4a in 3D with 128 zones at t=0.15. Density, pressure, energy, velocity components, and magnetic field components are shown
oblique to the grid from top left to bottom right.
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features are unresolved on the grid. Figure 21 shows the 2D
result after two periods.

We perform a 3D version of this test, also shown in
Figure 21, following the setup used in GS08.

6.8. MHD Blast Wave

We performed a 3D version of the 2D magnetized strong
blast wave test as defined in Londrillo & Del Zanna (2000).
The test is performed on a periodic domain with
( ) ( )=L L L, , 1, 3 2, 1X Y Z using 200×300×200 zones.
The fluid is initialized at rest with ρ=1 and a uniform
magnetic field ( ) ( )=B B B, , 10 2 , 10 2 , 0x y z . The fluid
has a pressure P=1, except for in the central region within
r0=0.125 where P=100. Figure 22 shows the density,
specific kinetic energy, and magnetic energy of the solution in a
slice through z=0 at t = 0.02.

6.9. Circularly Polarized Alfvén Wave

As a final MHD test, we show the propagation of a circular
polarized Alfvén wave as described by Tóth (2000). This test
was used by Tóth to compare the performance of various
approaches to maintaining · =B 0. The test can be done in
one or more dimensions, and it can be used for convergence
testing as it is an exact nonlinear solution to the equations of
MHD. The grid is initialized with ρ = 1, Pgas = 0.1,

( )p=v x0.1 sin 2y , ( )p=B x0.1 sin 2y , ( )p= =v B x0.1 cos 2z z ,
Bx=1, and vx = 0. For the 2D tests we rotate these properties
on the grid by an angle of ( )q = -tan 21 , while in the 3D tests
we perform the same rotation as the 3D tests in Section 6.1.
The grid was a periodic box with LX= [ ]- 5 2, 5 2 and

= *L L0.5Y X with 2N×N zones in 2D and (LX, LY,
LZ)=(3, 3/2, 3/2) with 2N×N×N in 3D. The left panel
of Figure 23 shows the convergence of the L1 error vector norm
after one wave period for the 2D and 3D tests with increasing

Figure 18. Brio & Wu shock tube test at t=0.08. The plot for energy is derived from the ratio of pressure to density. The points represent the solution computed on a
400 zone domain, while the solid line is the solution computed on a 104 zone domain.
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resolution, where the horizontal axis represents the number of
zones across the shorter dimensions. The right panel shows,
using every zone in the 2D tests, profiles of the in-plane

transverse component of the magnetic field in the rotated frame
(B2) after five wave periods, with the horizontal axis
representing the x-coordinate in the rotated reference frame.

Figure 20. Images of selected quantities (left) and slices of magnetic field components (right) for the MHD rotor test at t=0.15. Each quantity is scaled black to white
from the maximum to minimum value for a solution computed on a 400×400 zone domain. The top slice is taken at y=0 and shows the y-component of the
magnetic field, and the bottom slice is taken at x=0 and shows the x-component of the magnetic field.

Figure 19. Images of selected quantities (left) and slices of pressure (right) for the Orszag–Tang vortex test at t=0.5. Each quantity is scaled black to white linearly
from the minimum value to maximum value for a solution computed on a 192×192 zone domain. The slices are at y=−0.1875 (top) and y=−0.073 (bottom) and
compare the solution computed with 192×192 zones to a solution computed on a domain with 512×512 zones (red lines).
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The lack of scatter in these plots demonstrates that the rotated
wave fronts remain coherent.

7. Conclusions

In this paper we present the design and performance of a new
hybrid MPI/OpenMP astrophysical MHD code called WOM-
BAT. We are developing WOMBAT for broad application in
astrophysics, but especially in support of investigations of
cosmological turbulence and the evolution of magnetic fields in
galaxy clusters, where conductive fluid behaviors must be
captured with good fidelity on a very wide range of scales. This
requirement demands that WOMBAT have exceptional perfor-
mance and scaling on the latest generation of HPC systems. We
also argue in Section 1 that the ability to scale to high thread
counts is crucial to maintaining high performance for the target
simulations. This is particularly important for mesh refinement
and N-body extensions of WOMBAT currently in development,
where load imbalance is unavoidable. This work will be presented

in a follow-up to this paper. The optimization strategies
incorporated into WOMBAT are based on the Patch, a the basic
unit of work and domain decomposition within an MPI rank.
Patches are self-contained problems with their own boundary
zones and meta-data necessary to evolve them in time. These
properties make Patches ideal for presenting independent work to
threads within a rank. We presented the SPMD OpenMP design
of WOMBAT, where only a single OpenMP parallel region exists
for the duration of code execution. Threads update Patches and
perform all boundary communication collaboratively with the
Update and MPI-RMA Engines discussed in Section 4. We
present a unique enhancement of the Cray MPICH library
through a co-design effort with Cray, Inc. and the University of
Minnesota. The “thread-hot” MPI-RMA feature (see
Section 4.1.2) results in significant speedup of WOMBAT
because of its lock-free design.
We show the performance characteristics of WOMBAT on

several architectures including the latest generation of Intel
Xeon Phi “Knights Landing” processors. WOMBAT scaling

Figure 21. Images of magnetic pressure for the advection of a magnetic field loop. The top left image shows the initial conditions and the top right the solution after
two periods across a 2D domain with 256×128 zones. The bottom left image shows the initial conditions and the bottom right the solution after two periods for a 3D
domain with 2002×300 zones. Each image is scaled linearly from [0, 10−6].
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on these architectures up to 260 K threads on Blue Waters,
demonstrates its capabilities and adaptability.
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Figure 22. Images of selected quantities in a 2D slice at z=0 for the magnetic blast wave test in three dimensions at t=0.02. The solution was computed on a
domain with 200×300×200 zones.
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Appendix
MHDTVD

Integrating Equation (5) over a volume element and over a
time interval gives
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The right-handed eigenvector, +Rk i
n
, 1 2, and characteristics,

a +k i, 1 2, are from Cargo & Gallice (1997). The primitive
variables at zone interfaces, used to construct +Rk i

n
, 1 2 and

a +k i, 1 2, come from the averaging scheme also described in
Cargo & Gallice (1997). The purpose of k is to add a
controlled amount of dissipation into each wave to ensure that
Qk(χ), referred to as the coefficient of numerical viscosity, is
continuous and positive (Zheng & Lee 1998). This eliminates
spurious oscillations that can occur when there is an entropy

violation across a discontinuity. The value of k must satisfy
 <0 0.5k , and the optimal value depends on the number of

dimensions and complexity of flows in the calculation.
Under certain circumstances, Roe-type methods like

MHDTVD will produce unphysical densities or pressures
(Einfeldt et al. 1991). A typical solution to this problem is to
define floor values for density and pressure that are applied
when exceeded. WOMBAT uses this approach, but addition-
ally offers a set of user-defined floor values, called the
protection floor, that will automatically switch to another
Riemann solver that does not have this issue. Similar to the
approach of GS08, we substitute the MHDTVD fluxes with the
more diffusive HLL fluxes (Einfeldt et al. 1991) under the rare
conditions when the protection floor is exceeded. The modified
flux ¯ +

+ui
n

1 2
1 2 is computed for the HLL scheme as
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where amax and amin are the maximum and minimum
eigenvalues. Note that the HLL fluxes do not rely on an
eigensolution to the MHD equations, which makes them more
diffusive than the MHDTVD fluxes. Consequently, we apply
them as infrequently as possible, so only to avoid unphysical
behaviors.
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